Схема драйвер led: Схемы драйверов светодиодов на PT4115, QX5241 и др. микросхемах с регулятором яркости для диммируемых светодиодных светильников – Драйверы для светодиодов: устройство, виды, подключение

Простой драйвер для мощного светодиода

Наверное, каждый, даже начинающий радиолюбитель знает, что для того чтобы подключить обычный светодиод к источнику питания нужен всего один резистор. А как быть если светодиод мощный? Ватт так на 10. Как быть тогда?
Я вам покажу способ сделать простой драйвер для мощного светодиода всего из двух компонентов.
Простой драйвер для мощного светодиода
Для стабилизатора-драйвера нам понадобиться:
1. Резистор – aliexpress.
2. Микросхема – LM317 – aliexpress.
Простой драйвер для мощного светодиода
LM317 – это микросхема стабилизатор. Отлично подходит для конструирования регулируемых источников питания или драйверов для питания светодиодов, как в нашем случае.
Простой драйвер для мощного светодиода

Достоинства LM317


  • Диапазон стабилизации напряжения от 1,7 (включая напряжение светодиода – 3 В) до 37 В. Отличная характеристика, для автомобилистов: яркость не будет плавать на любых оборотах;
  • Выходной ток до 1,5 можно подключать несколько мощных светодиодов;
    Стабилизатор имеет встроенную систему защиты от перегрева и короткого замыкания.
  • Минусовое питание светодиода в схеме включения берется от источника питания, поэтому при креплении к корпусу автомобиля уменьшается количество монтажных проводов, а корпус может играет роль большого теплоотвода для светодиода.

Схема драйвера для мощного светодиода


Простой драйвер для мощного светодиода
Я буду подключать светодиод на 3 Ватта.В итоге нам нужно будет рассчитать сопротивление под наш светодиод. Светодиод мощностью 1 Вт потребляет 350 мА, а 3-х ваттный – 700 мА (можно посмотреть в даташит). Микросхема LM317 – имеет опорное напряжение стабилизатора – 1,25 – это число постоянное. Его нужно поделить на ток и получиться сопротивление резистора. То есть: 1,25 / 0,7 = 1,78 Ом. Ток берем в амперах. Выбираем ближайший резистор по сопротивлению, так как резисторов сопротивлением 1,78 не бывает. Берем 1,8 и собираем схему.

Если мощность вашего светодиода превышает 1 Вт, то микросхему необходимо установить на радиатор. Вообще LM317 рассчитана на ток до 1,5.
Питать нашу схему можно напряжение от 3 до 37 вольт. Согласитесь, солидный диапазон питания получается. Но чем больше напряжение, тем больше греется микросхема, учтите это.

Простой драйвер для мощного светодиода
Простой драйвер для мощного светодиода
Простой драйвер для мощного светодиода

Простой драйвер для мощного светодиода
В цепь можно включить не один мощный светодиод, а, скажем, два или три. То есть этой схемой можно запитать до 10 мощных светодиодов.

На али экспресс можно купить готовый стабилизатор, с переменным резистором под любой ток – LM317 линейный регулятор.

Самодельный драйвер для мощных светодиодов

Самодельный светодиодный светильник с самодельным драйвером

Светодиоды для своего питания требуют применения устройств, которые будут стабилизировать ток, проходящий через них. В случае индикаторных и других маломощных светодиодов можно обойтись резисторами. Их несложный расчет можно еще упростить, воспользовавшись «Калькулятором светодиодов».

Для использования мощных светодиодов не обойтись без использования токостабилизирующих устройств – драйверов. Правильные драйвера имеют очень высокий КПД — до 90-95%. Кроме того, они обеспечивают стабильный ток и при изменении напряжения источника питания. А это может быть актуально, если светодиод питается, например, от аккумуляторов. Самые простые ограничители тока — резисторы — обеспечить это не могут по своей природе.

Немного ознакомиться с теорией линейных и импульсных стабилизаторов тока можно в статье «Драйвера для светодиодов».

Готовый драйвер, конечно, можно купить. Но гораздо интереснее сделать его своими руками. Для этого потребуются базовые навыки чтения электрических схем и владения паяльником. Рассмотрим несколько простых схем самодельных драйверов для мощных светодиодов.

Простой драйвер для мощных светодиодов

Простой драйвер. Собран на макетке, питает могучий Cree MT-G2

Очень простая схема линейного драйвера для светодиода. Q1 – N-канальный полевой транзистор достаточной мощности. Подойдет, например, IRFZ48 или IRF530. Q2 – биполярный npn-транзистор. Я использовал 2N3004, можно взять любой похожий. Резистор R2 – резистор мощностью 0.5-2Вт, который будет определять силу тока драйвера. Сопротивление R2 2.2Ом обеспечивает ток в 200-300мА. Входное напряжение не должно быть очень большим – желательно не превышать 12-15В. Драйвер линейный, поэтому КПД драйвера будет определяться отношением V

LED / VIN, где VLED – падение напряжения на светодиоде, а VIN – входное напряжение. Чем больше будет разница между входным напряжением и падением на светодиоде и чем больше будет ток драйвера, тем сильнее будет греться транзистор Q1 и резистор R2. Тем не менее, VIN должно быть больше VLED на, как минимум, 1-2В.

Для тестов я собрал схему на макетной плате и запитал мощный светодиод CREE MT-G2. Напряжение источника питания — 9В, падение напряжения на светодиоде — 6В. Драйвер заработал сразу. И даже с таким небольшим током (240мА) мосфет рассеивает 0,24 * 3 = 0,72 Вт тепла, что совсем не мало.

Схема очень проста и даже в готовом устройстве может быть собрана навесным монтажом.

Схема следующего самодельного драйвера также предельно проста. Она предполагает использование микросхемы понижающего преобразователя напряжения LM317. Данная микросхема может быть использована как стабилизатор тока.

Драйвер для мощных светодиодов на микросхеме LM317

Еще более простой драйвер на микросхеме LM317

Входное напряжение может быть до 37В, оно должно быть как минимум на 3В выше падения напряжения на светодиоде. Сопротивление резистора R1 рассчитывается по формуле R1 = 1.2 / I, где I – требуемая сила тока. Ток не должен превышать 1.5А. Но при таком токе резистор R1 должен быть способен рассеять 1.5 * 1.5 * 0.8 = 1.8 Вт тепла. Микросхема LM317 также будет сильно греться и без радиатора не обойтись. Драйвер также линейный, поэтому для того, чтобы КПД был максимальным, разница VIN и VLED должна быть как можно меньше. Поскольку схема очень простая, она также может быть собрана навесным монтажом.

На той же макетной плате была собрана схема с двумя одноваттными резисторами сопротивленим 2.2 Ом. Сила тока получилась меньше расчетной, поскольку контакты в макетке не идеальны и добавляют сопротивления.

Следующий драйвер является импульсным понижающим. Собран он на микросхеме QX5241.

Драйвер для мощных светодиодов на микросхеме QX5241

Драйвер для мощных светодиодов на микросхеме QX5241

Схема также проста, но состоит из чуть большего количества деталей и здесь уже без изготовления печатной платы не обойтись. Кроме того сама микросхема QX5241 выполнена в достаточно мелком корпусе SOT23-6 и требует внимания при пайке.

Входное напряжение не должно превышать 36В, максимальный ток стабилизации – 3А. Входной конденсатор С1 может быть любым – электролитическим, керамическим или танталовым. Его емкость – до 100мкФ, максимальное рабочее напряжение – не менее чем в 2 раза больше, чем входное. Конденсатор С2 керамический. Конденсатор С3 – керамический, емкость 10мкФ, напряжение – не менее чем в 2 раза больше, чем входное. Резистор R1 должен иметь мощность не менее чем 1Вт. Его сопротивление рассчитывается по формуле R1 = 0.2 / I, где I – требуемый ток драйвера. Резистор R2 — любой сопротивлением 20-100кОм. Диод Шоттки D1 должен с запасом выдерживать обратное напряжение – не менее чем в 2 раза по значению больше входного. И рассчитан должен быть на ток не менее требуемого тока драйвера. Один из важнейших элементов схемы – полевой транзистор Q1. Это должен быть N-канальный полевик с минимально возможным сопротивлением в открытом состоянии, безусловно, он должен с запасом выдерживать входное напряжение и нужную силу тока. Хороший вариант – полевые транзисторы SI4178, IRF7201 и др. Дроссель L1 должен иметь индуктивность 20-40мкГн и максимальный рабочий ток не менее требуемого тока драйвера.

Количество деталей этого драйвера совсем небольшое, все они имеют компактный размер. В итоге может получиться достаточно миниатюрный и, вместе с тем, мощный драйвер. Это импульсный драйвер, его КПД существенно выше, чем у линейных драйверов. Тем не менее, рекомендуется подбирать входное напряжение всего на 2-3В больше, чем падение напряжения на светодиодах. Драйвер интересен еще и тем, что выход 2 (DIM) микросхемы QX5241 может быть использован для диммирования – регулирования силы тока драйвера и, соответственно, яркости свечения светодиода. Для этого на этот выход нужно подавать импульсы (ШИМ) с частотой до 20КГц. С этим сможет справиться любой подходящий микроконтроллер. В итоге может получиться драйвер с несколькими режимами работы.

Готовые изделия для питания мощных светодиодов можно посмотреть здесь.

Существует огромное количество принципиальных схем стабилизаторов тока, которые могут быть использованы как драйвера для мощных светодиодов. Производится также бесчисленное количество специализированных микросхем, на базе которых можно собирать драйвера самой разной сложности – все ограничивается только Вашим желанием и потребностями. Мы рассмотрели только самые простые самодельные драйвера. Читайте также статью, в которой рассматривается схема драйвера для светодиода от сети в 220В.

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп


Подключение мощных светодиодов в осветительных устройствах осуществляется через электронные драйверы, которые стабилизируют ток, на своём выходе.

В наше время большое распространение получили так называемые энергосберегающие люминисцентные лампы (компактные люминисцентные лампы –КЛЛ).Но со временем они выходят из строя. Одна из причин неисправности –перегорание нити накала лампы. Не спешите утилизировать такие лампы потому, что в электронной плате содержатся много компонентов которые можно использовать в дальнейшее в других самодельных устройствах. Это дроссели, транзисторы, диоды, конденсаторы. Обычно, у этих ламп электронная плата исправна, что дает возможность использования в качестве блока питания или драйвера для светодиода. В результате таким образом получим бесплатный драйвер для подключения светодиодов, тем более это интересно.

Можно посмотреть процесс изготовления самоделки в видео:

Перечень инструментов и материалов
-энергосберегающая люминисцентная лампа;
-отвертка;
-паяльник;
-тестер;
-светодиод белого свечения 10вт;
-эмальпровод диаметром 0,4мм;
-термопаста;
-диоды марки HER, FR, UF на 1-2А
-настольная лампа.

Шаг первый. Разборка лампы.
Разбираем энергосберегающую люминисцентную лампу аккуратно поддев отверткой. Колбу лампы нельзя разбивать так, как внутри находятся пары ртути. Прозваниваем нити накала колбы тестером. Если хоть одна нить показывает обрыв, значит колба неисправна. Если есть исправная аналогичная лампа, то можно подключить колбу от нее к переделываемой электронной плате, чтобы удостовериться в ее исправности.


Шаг второй. Переделка электронного преобразователя.
Для переделки я использовал лампу мощностью 20Вт, дроссель которой выдержать нагрузку до 20 Вт. Для светодиода мощностью 10Вт это достаточно. Если нужно подключить более мощную нагрузку, можно применить электронную плату преобразователя лампы с соответственной мощности, или поменять дроссель с сердечником большего размера.

Также возможно запитать светодиоды меньшей мощности, подобрав требуемое напряжение количеством витков на дросселе.
Смонтировал перемычки из провода в на штырьках для подключения нитей накала лампы.

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих лампБесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Поверх первичной обмотки дросселя нужно намотать 20 витков эмальпровода. Затем припаиваем вторичную намотанную обмотку к выпрямительному диодному мостику. Подключаем к лампе напряжение 220В и измеряем напряжение на выходе с выпрямителя. Оно составило 9,7В. Светодиод, подключенный через амперметр, потребляет ток в 0,83А. У этого светодиода номинальный ток равен 900мА , но чтобы увеличить его ресурс в работе специально занижено потребление по току. Диодный мостик можно собрать на плате навесным монтажом.

Схема переделанной электронной платы преобразователя. В результате из дросселя получаем трансформатор с подключенным выпрямителем. Зеленым цветом показаны добавленные компоненты.

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Шаг третий. Сборка светодиодной настольной лампы.
Патрон для лампы на 220 вольт убираем. Светодиод мощностью 10Вт установил на термопасту на металлический абажур старой настольной лампы. Абажур настольной лампы служит теплоотводом для светодиода.
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Электронную плату питания и диодный мост разместил в корпусе подставки настольной лампы.
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
За час работы измерил температуру нагрева светодиода и она показала 40 градусов Цельсия.
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
По моим ощущениям освещенность от светодиода примерно соответствует лампе накаливания на 100 ватт .
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Эта переделанная настольная лампа на светодиоде работает уже полгода. Нареканий нет, меня устраивает. В общем результате получился драйвер для светодиодов бесплатно и из бросовых материалов. Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

РадиоКот :: Сетевой драйвер мощного светодиода

РадиоКот >Схемы >Питание >Преобразователи и UPS >

Сетевой драйвер мощного светодиода

Здравствуйте уважаемые коты. Хочу представить вам схему, которая может использоваться для питания мощных светодиодов. В данной статье постараюсь показать и описать схему, объяснить методику правильной настройки работы с использованием осциллографа.

Покупал себе вот такой светодиод. (На фото я уже прикрутил его к радиатору для охлаждения)

Такие светодиоды есть различной мощности. Данный экземпляр 10W. Рекомендуемый производителем ток 1 Ампер, падение напряжения на нем от 10 до 12 вольт. Поэтому будем собирать импульсный источник питания, рассчитанный на поддержание тока через светодиод в пределах 1 Ампер и напряжение 12 вольт.

Эта же схема успешно может работать и как зарядное устройство для небольших аккумуляторов (к примеру, таких, которые используются в UPS). О том, что нужно изменить в данной схеме для использования ее в качестве зарядного устройства в конце статьи.


Приступим к изучению схемы

 Хотелось бы отметить, что эта схема (как и все обратноходовые блоки питания) не боится короткого замыкания на выходе. Ее можно использовать и как обычный блок питания, исключив их схемы шунт Ri, транзистор VT2, конденсатор C12 и резистор R12, поставив вместо шунта перемычку. И даже тогда схема не боится КЗ – все дело в том, что передача энергии в нагрузку происходит во время обратного хода (в это время силовой транзистор закрыт), а во время прямого хода (даже если на выходе короткое замыкание) ток через транзистор не превысит максимальный, так как микросхема KA3845 (UC3845…) следит за падением напряжения на истоковом резисторе ключа.

 

Принцип работы CC-CV (Constant current, constant voltage).

При включении в сеть ИИП (импульсный источник питания) с малой нагрузкой, напряжение на выходе будет равно 12 вольт (задается делителем на резисторах R10 и R11 в цепи управляемого стабилитрона VD6).

Ограничение выходного тока задается шунтом Ri. При превышении некоторого порога, падения напряжения на этом резисторе хватит для открытия транзистора VT2, который включен, как и TL431, в цепь оптопары PC817, при этом выходное напряжение уменьшается, а значит, уменьшается и ток. Таким образом, происходит стабилизация выходного тока. При сопротивлении резистора Ri 0,6 Ом выходной ток будет равен 1 амперу (на самом деле, возможно, потребуется подбор номинала, так как у деталей может быть отклонение от номинала).

И так вот она эта схема:

Транзистор VT2, на самом деле, не обязательно 2SC1815, просто такие очень часто используются в ATX блоках питания, а многие детали сняты именно с них.

Конденсатор C12 нужен для того, чтобы схема не реагировала на прикосновения к выходным проводам, этот номинал можно изменить – я подбирал минимальную емкость при которой данный эффект исчезает, можно использовать вплоть до 0.1мкФ, но желательно меньше.

Резистор R12 ограничивает ток базы транзистора VT2.

Приступим к изучению принципиальной схемы зарядного устройства.

По входу стоит предохранитель на 1 ампер (думаю, что его предназначение ясно), NTC резистор (для ограничения пускового тока, можно использовать любой с сопротивлением 5-10 Ом). При включении в сеть, пока заряжается конденсатор С1 после диодного моста VDS1, схема потребляет значительный ток, и чтобы его ограничить, нужен NTC резистор. Можно конечно поставить более мощный диодный мост, но это увеличивает габариты и стоимость. Диодный мост у меня RS206, опять же это не обязательно, можно применить любой на ток примерно 2А – ну чтоб с небольшим запасом.

Резистор R1 обеспечивает начальное напряжение питания микросхемы, после запуска она питается с дополнительной обмотки трансформатора. Смотрим на 4 и 8 вывод микросхемы – резистор R3 и конденсатор C5 задают частоту на выходе микросхемы (6 вывод) примерно 110 кГц, именно на нее рассчитываем трансформатор. Стабилитрон VD4 защищает нагрузку от перенапряжения при неисправности ОС (Обратной Связи).

В истоке силового транзистора VT1 стоит резистор R6 сопротивлением 2,2 Ома – о нем расскажу позже.

О цепочке RCD клампера (R7 C13 VD3) также расскажу попозже.

И теперь печатка.

Файл в формате программы Sprint Layout можно скачать в конце статьи.

Открываем нужный файл с помощью программы Sprint Layout 5.0, после открытия можно распечатать печатную плату для повторения конструкции. Маленькая подсказка: При наведении курсором мыши на детали всплывают их номиналы. Размер платы 70мм на 45мм.

Расчет трансформатора велся программой уважаемого Старичка (Starichok51), а именно Денисенко Владимира, его программы есть на форуме. Хочу поблагодарить Владимира за огромную помощь в написании статьи!
Ссылка на тему Программы расчета трансформаторов и дросселей

Для дальнейшей работы нам понадобится программа Flyback с первой страницы темы, поэтому скачиваем ее.

Скриншот расчета трансформатора

Трансформатор – сердечник EE19 (Такие сердечники во многих АТХ блоках имеются, нужно его разобрать и перемотать).

Методов для разбора трансформатора несколько:

Кипячение – опускаем трансформатор в чайник и кипятим, вытаскиваем, пробуем разобрать, если сердечник еще не расклеивается, то процедуру повторяем. Нужно добиться размягчения клея, которым склеены половинки сердечника. При расклеивании не спешим – если не поддается, то сильно ковырять не стоит, так как феррит очень хрупкий.

Замачивание – нужно опустить сердечник в емкость и залить ацетоном, желательно герметичную емкость, чтобы меньше запаха было. Остается ждать — лучше оставлять на ночь, чтобы точно расклеился.

Микроволновка – некоторые разбирают трансформатор, положив его в микроволновку и включив на несколько секунд для разогрева (при этом желательно, чтобы еще стакан с водой рядом был), потом вытаскивают и пробуют разобрать.

P/s метод разборки трансформатора с помощью микроволновки я бы не рекомендовал, есть возможность сжечь ее. Хотя такой метод тоже описывают в интернете и пишут, что проблем нет. Я же его тут указал, чтобы коллекция была полной.

Трансформатор разобрали, теперь нужно намотать под необходимые нужды. Для этого берем программу расчета трансформатора для обратноходового ИИП, называется Flyback – ссылку на тему, где можно скачать смотреть выше.


В программе нужно выбрать необходимый сердечник и указывать

минимальное и максимальное напряжение в сети.

Частота преобразования – я указал 110 кГц (задается резистором R3 и конденсатором С5), Отраженное напряжение можно так и оставить 125 вольт

Максимальное допустимое напряжение на ключе – смотрим даташит на имеющийся транзистор, значение Vdss

Сопротивление канала Rds(on) — смотрим даташит на имеющийся транзистор, значение Rds(on)

Плотность тока – я поставил 5А/мм2 (это значение зависит от условий охлаждения и размеров сердечника. При естественном охлаждении следует выбирать 4-6А/мм2. Если есть искусственная вентиляция, то можно задавать выше, до 8-10А/мм2. Следует учитывать что для маленьких сердечников можно задавать плотность тока выше, а для больших – меньше. Зависит от условия охлаждения обмоток, в больших сердечниках условия охлаждения хуже, поэтому плотность тока нужно выбирать ниже).

Неразрывность тока – лучше задавать равное 0, это соответствует разрывному току.

Диаметр провода первичной обмотки – если поставить галочку “Использовать диаметры проводов”, то при расчете программа будет опираться на данное значение. Сначала эту галочку лучше не ставить, чтобы программа сама рекомендовала диаметр провода. А потом можно подобрать из имеющихся проводов подходящие диаметры взамен рекомендованных.


Вторичные обмотки

Указываем необходимое напряжение, ток, падение напряжение на диоде.

В моем случае:

выходная обмотка питания 12 вольт, 1 ампер, 0,8 вольт

обмотка питания микросхемы 15 вольт, 0,01ампер, 0,8 вольт

 

При нажатии кнопки Рассчитать программа выдает нам следующие данные:

Первичная обмотка — 136 витков проводом 0,18 мм одна жила,

Вторичная обмотка – 14 витков проводом 0,35 мм три жилы (мотается сразу тремя проводами указанного диаметра)

Обмотка питания микросхемы — 18 витков проводом 0,07 мм в одну жилу

 

Диаметр провода можно выбрать немного больше — главное, чтобы при намотке все обмотки поместились в окно сердечника. Программа показывает Коэффициент заполнения окна, при значении до 0,3 провод должен поместиться в окно, но все зависит от того, как будете мотать трансформатор. Витки нужно укладывать плотно, виток к витку. Если мотать не очень аккуратно, то провод может не поместиться, поэтому тут только тренировка…

 

Чтобы была как можно меньше индуктивность рассеяния, с которой потом придется бороться с помощью RCD клампера, мотать трансформатор нужно так: половина первички, вторичка, обмотка питания микросхемы, вторая половина первички. Не забываем про межслойную изоляцию. После намотки нужно выставить зазор сердечника (Если сердечник с зазором по центральному керну, то зазор нужен не менее 0,3 мм – в скриншоте указано, если без зазора в центральном керне, то нужно выставить зазор 0,15 мм по крайним). Самое идеальное решение при подборе зазора – измерять индуктивность первички, и зазором подогнать необходимую величину индуктивности. Не путаем начала и концы обмоток (отмечены точками), для этого нужно мотать все обмотки в одну сторону.

Конденсатор фильтра питания 22мкФ, рекомендованное значение программа расчета также выдает.

Резистор в истоке силового транзистора, по схеме 2,2 Ома – это соответствует току через транзистор 0,45А. Сопротивление резистора = 1 / Амплитуда тока транзистора, (амплитуду смотрим по программе расчета). Если нет подходящего номинала резистора (при условии что будете делать расчет под свои нужды), то можно взять чуть меньше, но сильно не занижаем – помним, что этот резистор ограничивает ток через ключ и его нельзя превышать.

Силовой транзистор VT1 –полевик 2N60, можно применить и другие подходящие по параметрам. Я снимал его также с блока АТХ (в дежурке стоят… иногда там используются биполярники – ищем даташит на имеющийся транзистор, чтобы не воткнуть нечаянно биполярник в эту схему)

Обратная связь – оптопара. У меня pc817 – думаю, найти такую нет проблем.

Выходной диод шотки или любой быстродействующий, рассчитанный на ток выше чем максимально потребляемый нагрузкой и обратным напряжением равным или выше чем Ud обрат. (смотрим в программе расчета). В данной схеме можно использовать что-нибудь типа MBR3100, MBR1660 и т.п. – смотреть, что есть в продаже или в наличии.

Вот мы и намотали и запаяли трансформатор, теперь возьмемся за RCD клампер.

В программе расчета из меню можно вызвать вспомогательную программу расчета RCD клампера.

или

Верхний рисунок в положении переключателя Амплитуда выброса, нижний рисунок в положении Емкость конденсатора.


Остановимся подробнее на полях программы.

Отраженное напряжение – берем из результатов расчета трансформатора

Амплитуда выброса – желаемое напряжение выброса от энергии, запасенной в индуктивности рассеяния первичной обмотки, над отраженным напряжением

  С правой стороны можно поставить галочку для расчета емкости клампера по заданной амплитуде выброса либо расчет амплитуды выброса по заданной емкости. Амплитуду выброса можно выбирать 100-110 вольт.

Амплитуда тока – амплитуда тока в первичной обмотке, берем из результатов расчета трансформатора

Частота преобразования – лучше вводить реальную частоту преобразования, а не расчетную (при отсутствии возможности измерить частоту можно подставить расчетную, но тогда расчет может быть не совсем точный)

Индуктивность рассеяния – индуктивность рассеяния первичной обмотки, либо измеряем при закорачивании ВСЕХ вторичных обмоток, либо пользуемся предварительными расчетами по периодам свободных колебаний

Эквивалентная емкость — это сумма нескольких емкостей: выходная емкость ключа, емкость первичной обмотки, емкость монтажа, в общем все емкости, которые участвуют в колебательном процессе.

При нажатии кнопки Рассчитать, программа выдаст нам либо емкость конденсатора, сопротивление резистора и мощность рассеиваемую на нем, марку “медленного” диода и сопротивление резистора и мощность рассеиваемую на нем при использовании “быстрого” диода, либо те же данные, но с указанием в результатах амплитуды выброса (Зависит от положения переключателя)

 

Далее рассмотрим нижнюю часть подпрограммы расчета.

Расчет эквивалентной емкости и индуктивности рассеяния

 

Индуктивность L1 – полная индуктивность первичной обмотки трансформатора

Период колебаний по L1 – период свободных колебаний по полной индуктивности первичной обмотки после окончания передачи энергии. Эти свободные колебания можно увидеть только в режиме разрывного тока

Период колебаний по Ls — период свободных колебаний по индуктивности рассеяния первичной обмотки. Этот период следует измерять на том участке, где уже нет клампинга этих колебаний. (На осциллограмме покажу, что это значит)

При нажатии кнопки Рассчитать, программа выдаст нам Индуктивность рассеяния и Эквивалентную емкость. Если выбрать галочку автоперенос результатов в основной расчет, то эти значения автоматом подставятся в необходимые поля.

 

Важное замечание: Величины емкости и сопротивления, которые выдает подпрограмма расчета RCD клампера, могут немного отличаться от действительно необходимых величин для правильной настройки работы клампера. Емкость конденсатора программа рассчитывает довольно таки точно. Если нет необходимого номинала, то можно взять ближайший номинал из стандартного ряда, а вот с резистором все равно придется поработать.

Ну а теперь приступим к изучению осциллограмм, чтобы представлять, что мы должны видеть на приборе и знать, что означает каждая часть осциллограмм для правильной настройки ИИП.


Фото осциллограмм…

Сначала одно важное замечание: все измерения осциллографом проводить относительно плюса питания, чтобы пульсации напряжения на сетевом выпрямителе не размазывали картинку.

 

Чтобы правильно рассчитать и увидеть хорошую осциллограмму нам нужно измерить реальную частоту, на которой работает ИИП.

Вот что у нас получилось с реальной частотой:

На осциллографе положение переключателя 2мкс. В клетке 5 делений, значит одно деление 0,4мкс. Период колебаний почти 27 делений, итого 10,8 мкс. Частота в герцах равна единице, деленой на полученное значение в секундах.
10,8мкс/1 000 000 = 0,0000108 сек. Значит частота = 1/0,0000108 = примерно 92,6кГц

92,6кГц  — запоминаем

Теперь нам еще нужно узнать Период колебаний по L1 – период свободных колебаний по полной индуктивности первичной обмотки. Для более точного измерения я переключил осциллограф в положение 1мкс_100v/дел и измеряем на стоке полевика.

Смотрим следующий рисунок

1,8мкс – запоминаем

 

Период колебаний по Ls — период свободных колебаний по индуктивности рассеяния. Для измерения этого периода пришлось еще растянуть шкалу, я переключил осциллограф в положение 0,2мкс_100v/дел и измерил этот период на стоке полевика.

0,28мкс – запоминаем

Вводим частоту и периоды колебаний в подпрограмму расчета RCD клампера. И видим, что нам предлагает программа. Конденсатор C13 нужен 463пФ — я поставил 470пФ, резистор R7 нужен 131кОм – у меня стоит 150кОм. Отличие настройки клампера от расчетов объясняется приближенностью расчетов. В первую очередь, приближенной оценкой мощности, возвращаемой через «медленный» диод.

на стоке полевого транзистора (осциллограф в режиме 5мкс 100V_дел)


на конденсаторе RCD клампера (осциллограф в режиме 5мкс 100V_дел)

На истоке (осциллограф в режиме 2мкс 1V_дел)


Общая картина видна, теперь для более точного измерения будем растягивать шкалу

 

Осциллограф в режиме 2мкс 100V_дел

Уровень отраженного напряжения

Выброс над отраженным напряжением

Уровень отраженного напряжения по верхним осциллограммам, снятых на стоке полевого транзистора, примерно 125 вольт. Выброс над отраженным примерно 100 вольт. При правильном подборе RCD клампера выброс над отраженным напряжением, снятым на стоке, и на клампере будет одинаков и уровень, до которого разряжается конденсатор (нижний рисунок) должен доходить до полки отраженного напряжения (смотрим осциллограмму выше – отметка уровень отраженного напряжения)

У нас это условие выполняется, значит, можно считать, что ИИП собран и настроен на оптимальный режим работы!

Ну и несколько фотографий собранной платы:

Путем расчета трансформатора и некоторых деталей данную схему можно применить и для других целей. А именно: можно использовать как маломощный блок питания или как зарядное устройство для небольших аккумуляторов с UPS. 

В виду того, что вышла новая версия программы расчета обратноходовых источников питания flyback 7.0 у многих пользователей начались проблемы с расчетом RCD клампера. Причина одна — оставляют пустым поле остаток напряжения после выброса, чтобы таких вопросов не возникало прилагаю следующую осциллограмму

На ней я пометил на уже существующей осциллограмме уровень остаток напряжения после выброса. Осциллограф в режиме 2мкс 100V_дел — считаем: указанная линия примерно 145 вольт, уровень отраженного напряжения примерно 125 вольт, значит для того чтобы узнать остаток напряжения после выброса нужно от 145 вольт вычесть 125 вольт = 20 вольт, вот именно это значение и вводим в поле остаток напряжения после выброса.
А теперь смотрим, что получилось:
В программу расчета Flyback 7.0 я ввел те же значения, что и в младшей версии программы. По расчетам отличий нет (незначительные есть, но они никак не влияют в целом на конструкцию)

Теперь вводим все необходимые данные в расчет RCD клампера

что мы видим? А видим то, что номинал резистора клампера даже еще ближе к установленному мной в данной конструкции!
Хотелось бы еще раз сказать огромное Спасибо Владимиру за его программы!!!
Всем Спасибо и удачи в построении импульсных источников питания!

Продолжение следует (ждем подробную статью по сборке зарядного устройства)

Файлы:
01_pre.jpg Фото светодиода
21_pre.jpg фото 4
19_pre.jpg фото 1
20_pre.jpg фото 2
02_pre.jpg Схема
14_pre.jpg исток
15_pre.jpg клампер 2мкс 100V_дел
13_pre.jpg клампер
16_pre.jpg Уровень отраженного напряжения
08_pre.jpg измерение реальной частоты
05_pre.jpg Скриншот расчета
11_pre.jpg Период колебаний по Ls
10_pre.jpg Период колебаний по L1
08_pre.jpg измерение реальной частоты
12_pre.jpg сток полевого транзистора
17_pre.jpg Выброс над отраженным напряжением
18_pre.jpg выброс и разряд
04_pre.jpg Печатка
02_pre.jpg Схема
06_pre.jpg переключатель в положении Амплитуда выброса
07_pre.jpg переключатель в положении Емкость конденсатора
Печатная плата

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Схема драйвера для светодиода от сети 220В

Готовый драйвер для светодиодов от сети 220В

Современные мощные светодиоды отлично походят для организации яркого и эффективного освещения. Некоторую сложность составляет питание таких светодиодов – требуются мощные источники постоянного тока и токостабилизирующие драйвера. Вместе с тем, в любом помещении имеется розетка с переменным напряжением в 220В. И, конечно же, очень хотелось бы организовать работу мощных светодиодов от сети с минимальными затратами. Нет ничего невозможного – давайте рассмотрим схему драйвера для светодиода от сети 220В.

Прежде чем начнем обсуждать конкретные схемы, хотелось бы напомнить, что работа будет вестись с потенциально опасным для жизни переменным напряжением 220В. Разработка и расчет схемы потребуют хотя бы общего понимания происходящих электрических процессов, вероятность того, что при совершении ошибки вы можете получить ущерб или повреждения, очень высока. Мы категорически не одобряем проведение работ с высоким напряжением, если вы чувствуете себя неуверенно и не несем ответственности за возможный ущерб и повреждения, которые вы можете получить в процессе работы над предлагаемыми схемами. На самом деле, вполне возможно, что проще и дешевле будет приобрести и использовать уже готовый драйвер или даже светильник целиком. Выбор за вами.

Обычно падение напряжения на светодиоде составляет от 3 до 30В. Разница с сетевым напряжением в 220В очень большая, поэтому понижающий драйвер, безусловно, будет импульсным. Имеется несколько специализированных микросхем для изготовления таких драйверов – HV9901, HV9961, CPC9909. Все они очень похожи и от других микросхем отличаются тем, что имеют очень широкий диапазон допустимого входного напряжения – от 8 до 550В – и очень высокий КПД – до 85-90%. Тем не менее, предполагается, что общее падение напряжения на светодиодах в готовом устройстве будет составлять не менее 10-20% от напряжения источника питания. Не стоит пробовать запитать от 220В, например, один-два 3-6-ти вольтовых светодиода. Даже если они не сгорят сразу, КПД схемы будет низким.

Рассмотрим драйвер на базе микросхемы CPC9909, поскольку она новее остальных и вполне доступна. Вообще, все указанные микросхемы взаимозаменяемы и совместимы попиново (но потребуется пересчитать параметры дросселя и резисторов).

Базовая схема драйвера следующая:

CPC9909 - схема драйвера

Схема драйвера для светодиодов на базе микросхемы CPC9909

Переменное сетевое напряжение необходимо предварительно выпрямить, для этого используется диодный мост. C1 и C2 – сглаживающие конденсаторы. C1 – электролит емкостью 22мкФ и напряжением 400В (при использовании сети 220В), C2 – керамический конденсатор емкостью 0,1мкФ, 400В. Конденсатор С1 – керамика 0,1мкФ, 25В. Микросхема CPC9909 в процессе работы генерирует импульсы, которые открывают и закрывают силовой транзистор Q1, тем самым управляя течением тока через светодиоды. Частота переключения, индуктивность дросселя L, параметры мосфета Q1 и диода D1 тесно взаимосвязаны и зависят от требуемого падения напряжения на светодиодах, их рабочем токе. Давайте попробуем рассчитать нужные параметры ключевых деталей схемы на конкретном примере.

У меня есть могучий светодиод. 50 ватт мощности, напряжение 30-36В, рабочий ток до 1.4А. 4-5 ТЫСЯЧ люменов! Мощность света неплохого прожектора.

COB cветодиод 50W

COB cветодиод 50 ватт

Для охлаждения я посредством термопасты и суперклея посадил его на кулер от видеокарты.

Максимальный ток светодиода ограничим 1А. Значит

ILED = 1А

Падение напряжения на светодиодах –

VLED = 30В

Пульсацию тока примем равной +-15%:

ID = 1 * 0.15 * 2 = 0.3A

При напряжении сети переменного тока в 220В напряжение после выпрямительного моста и сглаживающих конденсаторов составит

VIN = 310В

Ток драйвера регулируется резистором Rs, сопротивление которого рассчитывается по формуле

Rs = 0.25 / ILED = 0.25 / 1 = 0.25 Ом.

Используем резистор 0.5W 0.22 Ом в SMD-корпусе 2512:

Rs = 0.22 Ом,

что даст ток 1.1А. При таком токе резистор будут рассеивать примерно 0.2Вт тепла и особо греться не будет.

Микросхема CPC9909 генерирует управляющие импульсы. Общая продолжительность импульса складывается из времени «высокого уровня», когда мосфет открыт и продолжительности паузы, когда транзистор закрыт. Жестко зафиксировать мы можем только продолжительность паузы. За нее отвечает резистор Rt. Его сопротивление рассчитывается по формуле:

Rt = (tp — 0.8) * 66, где tp — пауза в микросекундах. Сопротивление Rt получается в килоомах.

Продолжительность «высокого уровня» — это время, за которое рабочий ток достигнет требуемого значения — регулируется микросхемой CPC9909. Штатный диапазон частот находится в пределах 30-120КГц. Причем, чем выше будет частота, тем меньшая индуктивность дросселя в итоге потребуется. Но тем больше будет греться силовой транзистор. Поскольку индуктивность дросселя (и связанные с ней его габариты) для нас важнее, будем стараться держаться верхней части допустимого диапазона частот.

Давайте рассчитаем допустимое время паузы. Отношение продолжительности «высокого уровня» к общей продолжительности импульса — скважность импульса — рассчитывается по формуле:

D = VLED / VIN = 30 / 310 = 0.097

Частота переключений рассчитывается так:

F = (1 — D) / tp, а значит tp = (1 — D) / F

Пусть частота будет равна 90КГц. В этом случае

tp = (1 — 0.097) / 90 000 = 10мкс

Соответственно, потребуется сопротивление резистора Rt

Rt = (10 — 0.8) * 66 = 607.2КОм

Ближайший доступный номинал — 620КОм. Подойдет любой резистор с таким сопротивлением, желательно с точностью 1%. Уточняем время паузы с резистором номиналом 620КОм:

tp = Rt / 66 + 0.8 = 620 / 66 + 0.8 = 10.19мкс

Минимальная индуктивность дросселя L рассчитывается по формуле

Lmin = (VLED * tp) / ID

Используя уточненное значения tp, получаем

Lmin = (30 * 10.19) / 0.3 = 1мГн

Рабочий ток дросселя, при котором он гарантированно не должен входить в насыщение — 1.1 + 15% = 1.3А. Лучше взять с полуторным запасом. Т.е. не менее 2А.

Готового дросселя с такими параметрами в продаже я не нашел. Нужно делать самому. Вообще расчет катушек индуктивности — это большая отдельная тема. Здесь же я лишь оставлю ссылку на основательный труд Кузнецова А. «Трансформаторы и дроссели для импульсных источников питания».

Я использовал дроссель, выпаянный из нерабочего балласта обычной энергосберегающей лампы. Его индуктивность 2мГн, в сердечнике оказался зазор около 1мм. Считаем рабочий ток, получаем до 1.3 — 1.5А. Маловато, но для тестовой сборки пойдет.

Остались силовой транзистор и диод. Здесь проще — оба должны быть рассчитаны на напряжение не менее 400В и ток от 4-5А. Быстрый диод Шоттки может быть, например, таким — STTH5R06. Мосфет должен быть N-канальным. Для него крайне важно минимальное сопротивление в открытом состоянии и минимальный заряд затвора — менее 25нКл. Прекрасный выбор на нужный нам ток — FDD7N60NZ. В корпусе DPAK и с током до 1А греться он особо не будет. Можно будет обойтись без радиатора.

При разводке печатной платы нужно уделить внимание длине проводников и правильному расположению «земли». Проводник между CPC9909 и затвором полевого транзистора должен быть как можно короче. Это же относится и к проводнику от сенсорного резистора. Площадь «земли» должна быть как можно больше. Очень желательно один слой печатной платы полностью развести на землю. Резистор Rt нужно подальше от индуктивности и других проводников, работающих на высоких частотах.

Вывод LD микросхемы может быть использован для плавной регулировки яркости свечения светодиода, вывод PWMD – для димирования посредством ШИМ.

Вот примеры из технической документации, которые это реализуют.

Схема плавного регулирования яркости светодиодов

Схема плавного регулирования яркости светодиодов.

На этой схеме сила тока, а соответственно, и яркость светодиодов плавно регулируется от нуля до 350мА переменным резистором RA1. Также на схеме присутствуют номиналы и названия ключевых элементов для питания линейки ярких светодиодов током до 350мА.

Схема, предполагающее управление яркостью посредством ШИМ, выглядит так:

Схема регулирования яркости светодиодов посредством ШИМ

Схема регулирования яркости светодиодов посредством ШИМ

Допустимая частота диммирования — до 500Гц. Обратите внимание на очень желательную электрическую развязку генератора регулирующих импульсов (обычно, это микроконтроллер) и силовой части схемы. Развязка выполнена посредством использования оптопары.

Я собрал схему с плавной регулировкой переменным резистором. Получилась плата 60х30мм.

Плата драйвера для светодиода от сети 220В

Плата драйвера для светодиода от сети 220В

Драйвер заработал сразу и так как нужно. Переменным резистором ток регулируется от 0.1 до расчетных 1.1А. Вентилятор кулера где установлен светодиод запитан от 3-х вольт. Вращается совершенно без звука, при этом радиатор греется слабо. На плате после 5-ти тестовых минут работы на максимальном токе градусов до 50С нагрелся дроссель. Его рабочего тока, как и ожидалось, оказалось маловато. Также заметно греется полевой транзистор. Остальные детали греются незначительно.

Драйвер светодиода в работе

Сердце будущего мощного светильника в тестовом запуске

Разводку платы в программе Sprint-Layout 6.0 можно взять здесь.

Спустя какое-то время светодиод с драйвером заняли свое рабочее место в освещении аквариума. Работают по 15 часов в день при токе 0.7А. Света для аквариума объемом в 140 литров, на мой взгляд, вполне достаточно. Радиатор снабдил термистором и простенькой схемой — кулер включается автоматически и охлаждает всю конструкцию.

Драйвер для светодиода от сети 220В требует внимания при проектировании и сборке. Повторюсь — напряжение 220В опасно для жизни, а на схеме драйвера практически все детали находятся под этим и большим напряжением.

Тем не менее, при аккуратной сборке получится достаточно миниатюрный и эффективный драйвер, способный запитать от сети бытовой сети 220В один или несколько мощных светодиодов.

Больше о схемах драйверов для светодиодов читайте в статье «Самодельный драйвер для мощных светодиодов».

Отправить ответ

avatar
  Подписаться  
Уведомление о