Синусоидальный ток и основные характеризующие его величины – 9. Цепи синусоидального тока. Получение синусоидального эдс. Основные характеристики синусоидальных величин.

Переменный (синусоидальный) ток и основные характеризующие его величины.

Переменный ток (англ. alternating current — AC) — электрический токкоторый с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

В быту для электроснабжения переменяется переменный, синусоидальный ток.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (Рисунок 1):

Синусоидальный токСинусоидальный токРисунок 1

Формула переменного синусоидального токаФормула переменного синусоидального тока

Максимальное значение функции называют амплитудой. Её обозначают с помощью заглавной (большой) буквы и строчной буквы m — максимальное значение. К примеру:

  • амплитуду тока обозначают lm;
  • амплитуду напряжения Um.

Период Т— это время, за которое совершается одно полное колебание.

Частота f равна числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с-1)

f = 1/T

Угловая частота ω (омега) (единица угловой частоты — рад/с или с-1)

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой

. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси)

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j (или e(t) и j(t)).

Обратите внимание! При обозначении величин на схемах или в расчетах важен регистр букв, то есть заглавные буквы (E,I,U…) или строчные (e, i ,u…). Так как строчными буквами принято обозначать мгновенное значение, а заглавными могут обозначаться действующее значение величины (подробнее о действующем значении в следующей статье).

Синусоидальный ток и его характеристики

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):

Максимальное значение функции называют амплитудой. Амплитуду тока обозначают . Период Т — это время, за которое совершается одно полное колебание.

Частота равна числу колебаний в 1 с (единица частоты  — герц (Гц) или 

Угловая частота (единица угловой частоты — рад/с или 

)

Аргумент синуса, т. е.  называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени 

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ).

Рис. 3.1

Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их  и 

Синусоидальный ток

Синусоидальный ток представляет собой функцию времени. То есть в отличие от постоянного тока его значение меняется с течением времени. Основными характеристиками синусоидального тока являются. Амплитуда частота и начальная фаза.

 Частота f это количество колебаний в единицу времени. За единицу времени в системе СИ принимается одна секунда. Таким образом, количество колебаний за секунду это и есть частота синусоидального тока. И измеряется она в Герцах. Названа в честь ученого Герца. Величина обратная частоте называется периодом колебания T=1/f. Период измеряется в секундах. Определение периода звучит так период это время полного колебания. Если представить себе маятник часов то период это время за которое он совершит движение из одного крайнего положения в другое и обратно.

 Амплитуда синусоидального тока это максимальное значение тока, которое он достигает за период колебания. Опять же если рассматривать на примере маятника, то амплитуда это расстояние от положения равновесия до одного из крайних положений.

 Начальная фаза синусоидального тока это то время, на которое отстает либо опережает синусоида начальный момент времени. Представим две синусоиды одна, из которых начинается условно в нуле а другая в 1. То можно сказать, что вторая синусоида отстаёт по фазе от первой. Если обе синусоиды начинаются в одной точке то можно сказать что они синфазные, то есть имеют одну фазу. При этом они обе могут отставать от начального момента времени на одну и ту же величину, то есть иметь одинаковую начальную фазу.

Рисунок 1  — Графическое представление синусоидального тока

 Математически синусоидальный ток описывается уравнением:

i=Im*sin(wt+j)

где

   i     мгновенное значение тока это величина тока в определенный момент времени с учетом частоты и начальной фазы тока.

   Im    амплитуда тока.

   j начальная фаза  

   w     угловая частота выражается как 

Синусоидальный ток и его характеристики

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):

Максимальное значение функции называют амплитудой. Амплитуду тока обозначают . Период Т — это время, за которое совершается одно полное колебание.

Частота равна числу колебаний в 1 с (единица частоты  — герц (Гц) или 

Угловая частота (единица угловой частоты — рад/с или 

)

Аргумент синуса, т. е.  называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени 

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ).

Рис. 3.1

Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их  и 

Синусоидальный ток

Синусоидальный ток представляет собой функцию времени. То есть в отличие от постоянного тока его значение меняется с течением времени. Основными характеристиками синусоидального тока являются. Амплитуда частота и начальная фаза.

 Частота f это количество колебаний в единицу времени. За единицу времени в системе СИ принимается одна секунда. Таким образом, количество колебаний за секунду это и есть частота синусоидального тока. И измеряется она в Герцах. Названа в честь ученого Герца. Величина обратная частоте называется периодом колебания T=1/f. Период измеряется в секундах. Определение периода звучит так период это время полного колебания. Если представить себе маятник часов то период это время за которое он совершит движение из одного крайнего положения в другое и обратно.

 Амплитуда синусоидального тока это максимальное значение тока, которое он достигает за период колебания. Опять же если рассматривать на примере маятника, то амплитуда это расстояние от положения равновесия до одного из крайних положений.

 Начальная фаза синусоидального тока это то время, на которое отстает либо опережает синусоида начальный момент времени. Представим две синусоиды одна, из которых начинается условно в нуле а другая в 1. То можно сказать, что вторая синусоида отстаёт по фазе от первой. Если обе синусоиды начинаются в одной точке то можно сказать что они синфазные, то есть имеют одну фазу. При этом они обе могут отставать от начального момента времени на одну и ту же величину, то есть иметь одинаковую начальную фазу.

Рисунок 1  — Графическое представление синусоидального тока

 Математически синусоидальный ток описывается уравнением:

i=Im*sin(wt+j)

где

   i     мгновенное значение тока это величина тока в определенный момент времени с учетом частоты и начальной фазы тока.

   Im    амплитуда тока.

   j начальная фаза  

   w     угловая частота выражается как 

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток и основные характеризующие его величины.

 

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):

(3.1)

Максимальное значение функции называют амплитудой. Амплитуду тока обозначают Im.

Период Т — это время, за которое совершается одно полное колебание.

Рисунок 3.1

 

Частота f — число колебаний в 1 с (единица частоты f — герц (Гц) или с-1):

(3.2)

Угловая частота (единица угловой частоты — рад/с или с-1)

(3.3)

Аргумент синуса, т. е. ( t + ), называют фазой — характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью различных полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j(или e(t) и j (t)).

Среднее и действующее значения синусоидально изменяющейся величины.

Под средним значением синусоидально изменяющей­ся величины понимают ее среднее значение за полпериода. Среднее значение тока

(3.4)

т. е. среднее значение синусоидального тока составляет 2/ = 0,638 от амплитудного. Аналогично,

Eср = 2Em/ ; Uср = 2Um/ .

Широко применяют понятие действующего значения синусоидально изменяющейся величины (его называют также эффективным или среднеквадратичным). Действующее значение тока



(3.5)

Следовательно, действующее значение синусоидального тока равно 0,707 от амплитудного. Аналогично

Действующее значение синусоидального тока I численно равно значению такого постоянного тока, который за время, равное периоду синусоидального тока, выделяет такое же количество теплоты, что и синусоидальный ток.

Большинство измерительных приборов показывают действующее значение измеряемой величины.

Коэффициент амплитуды кa это отношение амплитуды периодически изменяющейся функции к ее действующему значению. Для синусоидального тока

(3.6)

Под коэффициентом формы кфпонимают отношение действующего значения периодически изменяющейся функции к ее среднему за полпе­риода значению. Для синусоидального тока

(3.7)

Сложение и вычитание синусоидальных функций времени на комплексной плоскости. Векторная диаграмма.

Положим, что необходимо сложить два тока (i1 и i2) одинаковой частоты. Сумма их дает некоторый ток той же частоты:

Требуется найти амплитуду Iти начальную фазу ψ тока i. С этой целью ток i1 изобразим на комплексной плоскости (рис. 3.4) вектором = Iеjψ1, а ток i2 — вектором = Iеjψ2. Геометрическая сумма векторов и I даст комплексную амплитуду суммарного тока Iт = Iт e2 . Амплитуда тока Iт определяется длиной суммарного вектора, а начальная фаза ψ — углом, образованным этим вектором и осью + 1.

Рисунок 3.4

 

Для определения разности двух токов (ЭДС, напряжений) следует на комплексной плоскости произвести не сложение, а вычитание соответствующих векторов.

Обратим внимание на то, что если бы векторы , ,Iтстали вращаться вокруг начала координат с угловой скоростью ω, то взаимное расположение векторов относительно друг друга осталось бы без изменений.

Векторной диаграммойназывают совокупность векторов на комплексной плоскости, изображающих синусоидально изменяющиеся функции времени одной и той же частоты и построенных с соблюдением правильной ориентации их относительно друг друга по фазе. Пример на рис. 3.4.

Мгновенная мощность.

Протекание синусоидальных токов по участкам электрической цепи сопровождается потреблением энергии от источников. Скорость поступления энергии характеризуется мощностью. Под мгновенным значением мощности, или под мгновенной мощностью, понимают произведение мгновенного значения напряжения и на участке цепи на мгновенное значение тока i, протекающего по этому участку:

(3.14)

где р — функция времени.

Перед тем как приступить к изучению основ расчета сложных цепей синусоидального тока, рассмотрим соотношения между токами и напряжениями в простейших цепях, векторные диаграммы для них и кривые мгновенных значений различных величин. Элементами реальных цепей синусоидального тока являются резисторы, индуктивные катушки и конденсаторы. Протеканию синусоидального тока оказывают сопротивление резистивные элементы (резисторы) — в них выделяется энергия в виде теплоты — и реактивные элементы (индуктивные катушки и конденсаторы) — они то запасают энергию в магнитном (электрическом) поле, то отдают ее. Рассмотрим поведение этих элементов.

Комплексная проводимость.

Под комплексной проводимостью Y понимают величину, обратную комплексному сопротивлению Z:

(3.37)

Единица комплексной проводимости — См (Ом-1). Действительную часть ее обозначают через g, мнимую — через b.

Так как

то

(3.38)

Если X положительно, то и b положительно. При X отрицательном b также отрицательно.

При использовании комплексной проводимости закон Ома (3.35) запи-сывают так:

(3.39)

или

где Ia — активная составляющая тока;Ir реактивная составляющая ; тока; U — напряжение на участке цепи, сопротивление которого равно Z.

 

Определение дуальной цепи.

Две электрические цепи называют дуальными, если закон изменения контурных токов в одной из них подобен закону изменения узловых потенциалов в другой. Исходную и дуальную ей схемы называют взаимно обратными.

В качестве простейшего примера на рис. 3.32изображены две дуальные цепи.

Рис.3.32.

 

Схема на рис. 3.32, а состоит из источника ЭДС Е и последовательно с ним включенных активного, индуктивного и емкостного элементов (R, L, С). Схема на рис. 3.32б состоит из источника тока J3и трех параллельных ветвей. Первая ветвь содержит активную проводимость gэ вторая — емкость Сэ, третья — индуктивность Zэ.

Для того чтобы показать, какого рода соответствие имеет место в дуальных цепях, составим для схемы на рис. 3.32, а уравнение по методу контурных токов:

(3.85)

а для схемы на рис. 3.32б — по методу узловых потенциалов, обозначив потенциал точки а через φа, положив равным нулю потенциал второго узла:

(3.86)

Если параметры gэ, Lэ. Сэ, схемы (рис. 3.32б) согласовать с параметрами R, L, С схемы (рис. 3.32а) таким образом, что

(3.87)

где к — некоторое произвольное число (масштабный множитель преоб-разования), Ом2, то

(3.88)

С учетом равенства (3.88) перепишем уравнение (3.86) следующим об-разом:

(3.89)

Из сопоставления уравнений (3.85) и (3.89) следует, что если ток Jэ источника тока в схеме на рис. 3.32б изменяется с той же угловой частотой, что и ЭДС Е в схеме на рис. 3.32а, и численно равен E , а параметры обеих схем согласованы в соответствии с уравнением (3.87), то при к = 1Ом 2. закон изменения во времени потенциала φ0 в схеме на рис. 3.32б совпадет с законом изменения во времени тока I в схеме на рис. 3.32а.

Если свойства какой-либо из схем изучены, то они полностью могут быть перенесены на дуальную ей схему.

Между входным сопротивлением Zисх исходного двухполюсника и входной проводимостью Yдуалдуального ему двухполюсника существует соотношение Zисх =k Yдуал

Из (3.88) получаем соотношение между частотной характеристикой чисто реактивного исходного двухполюсника Хисх(ω) и частотной характеристикой дуального ему тоже чисто реактивного двухполюсника b дуал (ω). Каждому элементу исходной схемы (схемы с источниками ЭДС E и параметрами R, L, С) отвечает свой элемент эквивалентной дуальной схемы (схемы с источниками тока J3 и параметрами gэ, Сэ, Lэ).

Синусоидальный ток и основные характеризующие его величины.

 

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):

(3.1)

Максимальное значение функции называют амплитудой. Амплитуду тока обозначают Im.

Период Т — это время, за которое совершается одно полное колебание.

Рисунок 3.1

 

Частота f — число колебаний в 1 с (единица частоты f — герц (Гц) или с-1):

(3.2)

Угловая частота (единица угловой частоты — рад/с или с-1)

(3.3)

Аргумент синуса, т. е. ( t + ), называют фазой — характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью различных полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j(или e(t) и j (t)).


Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Переменный синусоидальный ток

Колебания маятника также подчиняются закону синуса. Если записать проекцию траектории движения математического маятника на движущуюся бумажную ленту — получится синусоида.

Синусоидальным током называется периодический переменный ток, который с течением времени изменяется по закону синуса.

Синусоидальный ток — элементарный, то есть его невозможно разложить на другие более простые переменные токи.

Переменный синусоидальный ток выражается формулой:

, где

 — амплитуда синусоидального тока;

 — некоторый угол, называемый фазой синусоидального тока.

Фаза синусоидального тока изменяется пропорционально времени .

Множитель , входящий в выражение фазы  — величина постоянная, называемая угловой частотой переменного тока.

Угловая частота синусоидального тока зависит от частоты этого тока и определяется формулой:

, где

 — угловая частота синусоидального тока;

 — частота синусоидального тока;

 — период синусоидального тока;

 — центральный угол окружности, выраженный в радианах.

Зависимость синусоидального тока от времени

Зависимость синусоидального тока от угла ωt

Периоду соответствует угол , половине периода угол и так далее…

Исходя из формулы , можно определить размерность угловой частоты:

, где

 — время в секундах,

 — угол в радианах, является безразмерной величиной.

Фаза синусоидального тока измеряется радианами.

1 радиан = 57°17′, угол 90° = радиан, угол 180° = радиан, угол 270° = радиан, угол 360° = радиан, где радиан;  — число «Пи», ° — угловой градус и  — угловая минута.

Формула описывает случай, когда наблюдение за изменением переменного синусоидального тока начинается с момента времени при . Если не равен нулю, тогда формула для определения мгновенного значения переменного синусоидального тока примет следующий вид:

, где

 — фаза переменного синусоидального тока;

 — угол, называемый начальной фазой переменного синусоидального тока.

Начальная фаза переменного тока 

Начальная фаза переменного тока 

Если в формуле принять , то будем иметь

и .

Начальная фаза — это фаза синусоидального тока в момент времени .

Начальная фаза переменного синусоидального тока может быть положительной или отрицательной величиной. При мгновенное значение синусоидального тока в момент времени положительно, при  — отрицательно.

Если начальная фаза , то ток определяется по формуле . Мгновенное значение его в момент времени равно

, то есть равно положительной амплитуде тока.

Если начальная фаза , то ток определяется по формуле . Мгновенное значение его в момент времени равно

, то есть равно отрицательной амплитуде тока.

9. Идеальные элементы электрической цепи синусоидального тока

11. Неразветвленная цепь синусоидального тока. Резонанс напряжений

Резонанс напряжений — резонанс, происходящий в последовательном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.

Описание явления

Пусть имеется колебательный контур с частотой собственных колебаний f, и пусть внутри него работает генератор переменного тока такой же частоты f.

В начальный момент конденсатор контура разряжен, генератор не работает. После включения напряжение на генераторе начинает возрастать, заряжая конденсатор. Катушка в первое мгновение не пропускает ток из-за ЭДС самоиндукции. Напряжение на генераторе достигает максимума, заряжая до такого же напряжения конденсатор.

Далее: конденсатор начинает разряжаться на катушку. Напряжение на нем падает с такой же скоростью, с какой уменьшается напряжение на генераторе.

Далее: конденсатор разряжен до нуля, вся энергия электрического поля, имевшаяся в конденсаторе, перешла в энергию магнитного поля катушки. На клеммах генератора в этот момент напряжение нулевое.

Далее: так как магнитное поле не может существовать стационарно, оно начинает уменьшаться, пересекая витки катушки в обратном направлении. На выводах катушки появляется ЭДС индукции, которое начинает перезаряжать конденсатор. В цепи колебательного контура течет ток, только уже противоположно току заряда, так как витки пересекаются полем в обратном направлении. Обкладки конденсатора перезаряжаются зарядами, противоположными первоначальным. Одновременно растет напряжение на генераторе противоположного знака, причем с той же скоростью, с какой катушка заряжает конденсатор.

Далее: катушка перезарядила конденсатор до максимального напряжения. Напряжение на генераторе к этому моменту тоже достигло максимального.

Возникла следующая ситуация. Конденсатор и генератор соединены последовательно и на обоих напряжение, равное напряжению генератора. При последовательном соединении источников питания их напряжения складываются.

Следовательно, в следующем полупериоде на катушку пойдет удвоенное напряжение (и от генератора, и от конденсатора), и колебания в контуре будут происходить при удвоенном напряжении на катушке.

В контурах с низкой добротностью напряжение на катушке будет ниже удвоенного, так как часть энергии будет рассеиваться (на излучение, на нагрев) и энергия конденсатора не перейдет полностью в энергию катушки). Соединены как бы последовательно генератор и часть конденсатора.

2.1. Синусоидальный ток и основные характеризующие его величины » СтудИзба

Глава 2.

Электрические цепи однофазного синусоидального тока.

2.1. Синусоидальный ток и основные характеризующие его величины.

Синусоидальным током называют ток, изменяющийся во времени по синусоидальному закону (рис. 2.1):

Ток  i(t)  называют мгновенным. Максимальное значение тока называют амплитудой и обозначают  . Период Т – это время, за которое совершается одно полное колебание. Частота равна числу колебаний в секунду , единица частоты  — герц (Гц).

Угловая частота , единица угловой частоты рад/с или .Аргумент синуса, т.е. , называют фазой. Фаза характеризует состояние колебания в данный момент времени t.

Начальная фаза тока — .

Любая синусоидальная функция характеризуется тремя величинами: амплитудой, угловой частотой и начальной фазой.

Синусоидальные токи и ЭДС сравнительно низких частот, до нескольких килогерц, получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых и полупроводниковых генераторов, подробно рассматриваемых в разделе – электроника.

9. Цепи синусоидального тока. Получение синусоидального эдс. Основные характеристики синусоидальных величин.

Переменный ток – электрический ток, изменяющийся с течением времени. Значение переменного тока, а также напряжение и ЭДС в любой момент времени t называется мгновенным значением. i=i(t), u=u(t), e=e(t)

Наибольшее из мгновенных значений периодически изменяющихся величин называется максимальными или амплитудными значениями и обозначаются Um, Im, Em

Под переменным током обычно подразумевается синусоидальный ток – периодический электрический ток. Являющийся синусоидальной функцией времени. В электрических цепях синусоидальный ток создается под действием синусоидальной ЭДС. Генератор переменного тока состоит из электромагнита, между полюсами которого расположен якорь с обмоткой. При вращении якоря приводным двигателем с частотой α/t в витках возбуждается ЭДС.

Промежуток времени Т, в течение которого ЭДС (ток) совершает полное колебание и принимает прежнее по величине и знаку значение, называется периодом.

Число периодов в секунду – частота переменного тока. f=1/Т (Гц- герц)

Величина w— угловая частота = числу периодов за секунд.

Действующее значение тока — это среднее квадратичное значение электрического тока за период, численно равное значению такого эквивалентного постоянного тока, при котором на сопротивлении выделяется такое же количество теплоты, как и при переменном. I=Im/ √2

Если в начальный момент времени e(0)=Em sin(0+α) – не равно нулю и будет определяться начальным углом α. Называемый фазовым углом или просто начальной фазой.

Получим e=Emsin(α)=Emsin(wt+α).

10. Способы представления синусоидальных величин (тригонометрическими функциями, графиками изменений во времени, вращающимися векторами, комплексными числами).

1)аналитическая (тригонометрическая) форма записи:

e=Emsin(ψ)=Emsin(wt+ ψe), i=Imsin(ψ)=Emsin(wt+ ψi), u=Umsin(ψ)=Emsin(wt+ ψu)

2)графическая

3)в виде радиус-вектора в декартовой системе координат

4)изображение синусоидальной величины на комплексной плоскости.

Ima=Imcosψi – активная составляющая, Imp=Imsinψi – реактивная составляющая

ψi=arctg(Imp/Ima) Im=√(I2ma+I2mp)

Im, Em, Um – комплексные амплитудные значения

Im=(Ima+jImp){алгебраическая}=Im(cosψi+jsinψi){тригонометрическая}=Imejψi{показательная}

11. Неразветвленная цепь переменного тока с резистивным сопротивлением R, конденсатором емкостью С и катушкой индуктивностью L (сопротивления, проводимости, ток напряжение, мощность, векторная диаграмма )

12.Расчет и анализ сложной разветвленной электрической цепи переменного тока. Символический метод (последовательность, особенности и пример расчета).

Z1=R1–jXL1= ; Z2= j(XL2– jXC2)=; Z3= j(XL3– jXC3)=; Z4= R4= ; Z5= R5+j(XL5 – XC5)=; Z6= R6= ; Z7= R7+j(XL7 – XC7)j=

Для мгновенных значений:

1 закон Кирхгофа: узел 1: i1+i2-i5+j10,узел 2: i6-i2-i1-i7-j10,узел 3: i7+i5-i4-j4-i30

2 закон Кирхгофа: контур 030:

контур 0230:

контур 2132:

контур 212:

Для действующих значений:

1 закон Кирхгофа: узел 1: I1+I2-I5+J1=0, узел 2: I6-I2-I1-I7-J1=0, узел 3: I7+I5-I4-J4-I3=0,

2 закон Кирхгофа: контур 030: I4*Z4-I3*Z30, контур 0230: I6*Z6+I7*Z7+I4*Z40, контур 212: -I2*Z2+I1*Z1E2, контур 2132: I1*Z1+I5*Z5-I7*Z7E5

Отправить ответ

avatar
  Подписаться  
Уведомление о