Расчет емкости конденсатора: как рассчитать с помощью онлайн калькулятора – Расчёт ёмкости конденсатора онлайн / Калькулятор / Элек.ру

Содержание

Емкость конденсаторов: определение, формулы, примеры.

Определение 1

Конденсатор – это совокупность двух любых проводников, заряды которых одинаковы по значению и противоположны по знаку.

Его конфигурация говорит о том, что поле, созданное зарядами, локализовано между обкладками. Тогда можно записать формулу электроемкости конденсатора:

C=qφ1-φ2=qU.

Значением φ1-φ2=U обозначают разность потенциалов, называемую напряжением, то есть U. По определению емкость положительна. Она зависит только от размерностей обкладок конденсатора их взаиморасположения и диэлектрика. Ее форма и место должны минимизировать воздействие внешнего поля на внутреннее. Силовые линии конденсатора начинаются на проводнике с положительным зарядом, а заканчиваются с отрицательным. Конденсатор может являться проводником, помещенным в полость, окруженным замкнутой оболочкой.

Выделяют три большие группы: плоские, сферические, цилиндрические. Чтобы найти емкость, необходимо обратиться к определению напряжения конденсатора с известными значениями зарядов на обкладках.

Плоский конденсатор

Определение 2

Плоский конденсатор – это две противоположно заряженные пластины, которые разделены тонким слоем диэлектрика, как показано на рисунке 1.

Формула для расчета электроемкости записывается как

C=εε0Sd, где S является площадью обкладки, d – расстоянием между ними, ε — диэлектрической проницаемостью вещества. Меньшее значение d способствует большему совпадению расчетной емкости конденсатора с реальной.

Плоский конденсатор

Рисунок 1

При известной электроемкости конденсатора, заполненного N слоями диэлектрика, толщина слоя с номером i равняется di, вычисление диэлектрической проницаемости этого слоя εi выполняется, исходя из формулы:

C=ε0Sd1ε1+d2ε2+…+dNεN.

Сферический конденсатор

Определение 3

Как определить емкость конденсатора: 4 рабочих способа

Основной характеристикой конденсатора является его емкость. Очень часто замеры емкости требуется проводить в электролитическом конденсаторе. В отличие от керамических и оксидных конденсаторов, которые редко выходят из строя (разве что в результате пробоя диэлектрика), электролитическим деталям свойственна потеря ёмкости из-за высыхания электролита. Поскольку работа электронных схем сильно зависит от емкостных характеристик, то необходимо знать, как определить емкость конденсатора.

Существуют разные способы определения ёмкости:

  • по кодовой или цветной маркировке деталей;
  • с помощью измерительных приборов;
  • с использованием формулы.

Измерить емкость проще всего с помощью измерителя C и ESR. Для этого контакты измерительных щупов подсоединяют к выводам конденсатора, соблюдая полярность электролитических деталей. При этом результаты измерений выводятся на дисплей. (Рисунок 1). Радиолюбители, которым часто приходится делать измерения, приобретают такой прибор или изготавливают его самостоятельно.

Измерение ёмкости с помощью измерителя C и ESRРис. 1. Измерение ёмкости с помощью измерителя C и ESR

С использованием мультиметра и формул

Если в вашем распоряжении есть мультиметр с функцией измерения параметра «Cx», то измерить ёмкость конденсатора довольно просто: следует переключить прибор в режим «Сх», после чего выбрать оптимальный диапазон измерения, соответствующий параметрам конденсатора. Ножки конденсатора вставляем в соответствующее гнездо (соблюдая полярность подключения) и считываем его параметры.

Режим "Сх" в мультиметре
Режим «Сх» в мультиметре

Менее точно можно определить ёмкость с помощью тестера, у которого нет режима «Сх». Для этого потребуется источник питания, к которому подключают конденсатор по простой схеме (рис. 2).

Схема подключения конденсатора Рис. 2. Схема подключения конденсатора

Алгоритм измерения следующий:

  1. Измерьте напряжение источника питания щупами контактов измерительного прибора.
  2. Образуйте RC-цепочку с конденсатором и выводами резистора номиналом 1 – 10 кОм.
  3. Закоротите выводы конденсатора и подключите RC-цепочку к источнику питания.
  4. Замерьте напряжение образованной цепи с помощью мультиметра.
  5. Если напряжение изменилось, необходимо подогнать его до значения, близкого к тому, которое вы получили на выходе источника питания.
  6. Вычислите 95% от полученного значения. Запишите показатели измерений.
  7. Возьмите секундомер и включите его одновременно с убиранием закоротки.
  8. Как только мультиметр покажет значение напряжения, которое вы вычислили (95%), остановите секундомер.
  9. По формуле С = t/3R, где t – время падения напряжения, вычисляем ёмкость конденсатора в фарадах, если единицы измерения сопротивление резистора выразили в омах, а время в секундах.
Измерение с помощью тестера. ПроверкаРис. 3. Измерение с помощью тестера. Проверка

Подчеркнём ещё раз, что точность измерения ёмкости данным способом не слишком высока, но определить работоспособность радиоэлемента на основании такого измерения вполне возможно. Некоторые узлы электронных приборов исправно работают, если есть небольшие отклонения от номинальных емкостей, главное, чтобы не было электрического пробоя.

Таким же методом можно вычислить параметры керамического радиоэлемента. Для этого необходимо подключить RC-цепочку через трансформатор и подать переменное напряжение. Значение ёмкости в данном случае определяем по формуле: C = 0.5*π*f*Xc , где f частота тока, а Xc ёмкостное сопротивление.

Осциллографом

С приемлемой точностью можно определить ёмкость конденсатора с помощью цифрового или обычного электронного осциллографа. Принцип похож на метод измерения ёмкости тестером. Разница только в том, что не потребуется секундомер, так как с высокой точностью время зарядки конденсатора отображается на экране осциллографа. Если применить генератор частоты и последовательную RC-цепочку (рис. 4), то ёмкость можно рассчитать по простой формуле: C = U

R / UC* ( 1 / 2*π*f*R ).

Простая схемаРис. 4. Простая схема

Алгоритм вычисления простой:

  1. Подключите осциллограф к электрической схеме. При подключении щупов прибора к электролитам соблюдайте полярность электрического тока.
  2. Измерьте амплитуды напряжений на конденсаторе и на резисторе.
  3. Путём подстройки частоты генератора добивайтесь, чтобы значения амплитуд на обоих элементах сравнялись (хотя бы приблизительно).
  4. Подставьте полученные значения в формулу и вычислите ёмкость конденсатора.

При измерении ёмкостей неполярных конденсаторов часто вместо RC-цепочки собирают мостовую схему с частотным генератором (показано на рис. 5), а также другие сборки. Сопротивления резисторов подбирают в зависимости от параметров номинальных напряжений измеряемых деталей. Ёмкость вычисляют из соотношения: r/ Cx = r/ C0.

Мостовая схемаРисунок 5. Мостовая схема

Гальванометром

При наличии баллистического гальванометра также можно определить ёмкость конденсатора.  Для этого используют формулу:

C = α * Cq / U , где α –  угол отклонения гальванометра, Cq – баллистическая постоянная прибора, U – показания гальванометра.

Из-за падения сопротивления утечки ёмкость конденсаторов уменьшается. Энергия теряется вместе с током утечки.

Описанные выше методики определения ёмкости позволяют определить исправность конденсаторов. Значительное отклонение от номиналов говорит, что конденсаторы неисправны. Пробитый электролитический радиоэлемент легко определяется путём измерения сопротивления. Если сопротивление стремится к 0 – изделие закорочено, а если к бесконечности – значит, есть обрыв.

Следует опасаться сильного электрического разряда при подключениях щупов к большим электролитам. Они могут накапливать мощный электрический заряд от постоянного тока, который молниеносно высвобождается током разряда.

По маркировке

Напомним, что единицей емкости в системе СИ является фарада ( обозначается F или Ф). Это очень большая величина, поэтому на практике используются дольные величины:

  • миллифарады (mF, мФ ) = 10-3 Ф;
  • микрофарады (µF, uF, mF, мкФ) = 10-3 мФ = 10-6 Ф;
  • нанофарады (nF, нФ) = 10-3 мкФ =10-9 Ф;
  • пикофарады (pF, mmF, uuF) = 1 пФ = 10-3 нФ = 10-12 Ф.

Мы перечислили название единиц и их сокращённое обозначение потому, что они часто встречаются в маркировке крупных конденсаторов (см. рис. 6).

Маркировка крупных конденсаторовРис. 6. Маркировка крупных конденсаторов

Обратите внимание на маркировку плоского конденсатора (второй сверху): после трёхзначной цифры стоит буква М. Данная буква не обозначает единицы измерения «мегафарад» – таких просто не существует. Буквами обозначены допуски, то есть, процент отклонения от ёмкости, обозначенной на корпусе. В нашем случае отклонение составляет 20% в любую сторону. Надпись 102М на большом корпусе можно было бы написать: 102

нФ ± 20%.

Теперь расшифруем надпись на корпусе третьего изделия. 118 – 130 MFD обозначает, что перед нами конденсатор, ёмкость которого находится в пределах 118 – 130 микрофарад. В данном примере буква М уже обозначает «микро». FD – обозначает «фарады», сокращение английского слова «farad».

На этом простом примере видно, какая большая путаница в маркировке. Особенно запутана кодовая маркировка, применяемая для крохотных конденсаторов. Дело в том, что можно встретить конденсаторы, маркировка которых выполнена старым способом и детали с современной кодировкой, в соответствии со стандартом EIA. Одни и те же символы можно по-разному интерпретировать.

По стандарту EIA:

  1. Две цифры и одна буква. Цифры обозначают ёмкость, обычно в пикофарадах, а буква – допуски.
  2. Если буква стоит на первом или втором месте, то она обозначает либо десятичную запятую (символ R), либо указывает на название единицы измерения («p» – пикофарад, «n» – нанофарад, «u» – микрофарад). Например: 2R4 = 2.4 пФ; N52 = 0,52 нФ; 6u1 = 6,1 мкф.
  3. Маркировка тремя цифрами. В данном коде обращайте внимание на третью цифру. Если её значение от 0 до 6, то умножайте первые две на 10 в соответствующей степени. При этом 100 =1; 101 = 10; 102 = 100 и т. д. до 106.

Цифры от 7 до 9 указывают на показатель степени со знаком «минус»: 7 условно = 10-3; 8 = 10-2; 9 = 10-1.

Пример:

  • 256 обозначает: 25× 105 = 2500 000 пФ = 2,5 мкФ;
  • 507 обозначает: 50 × 10-3 = 50 000 пФ = 0, 05 мкФ.

Возможна и такая надпись: «1B253». При расшифровке необходимо разбить код на две части – «1B» (значение напряжения) и 253 = 25 × 103 = 25 000 пФ = 0,025 мкФ.

В кодовой маркировке используются прописные буквы латинского алфавита, указывающие допуски. Один пример мы рассмотрели, анализируя маркировку на рис. 6.

Приводим полный список символов:

  • B = ± 0,1 пФ;
  • C = ± 0,25 пФ;
  • D = ± 0,5 пФ или ± 0,5% (если емкость превышает 10 пФ).
  • F = ± 1 пФ или ± 1% (если емкость превышает 10 пФ).
  • G = ± 2 пФ или ± 2% (для конденсаторов от 10 пФ»).
  • J = ± 5%.
  • K = ± 10%.
  • M = ± 20%.
  • Z = от –20% до + 80%.

Изделия с кодовой маркировкой изображены на рис. 7.

Пример кодовой маркировкиРис. 7. Пример кодовой маркировки

Если в кодировке отсутствует символ из приведённого выше списка, а стоит другая буква, то она может единицу измерения емкости.

Важным параметром является его рабочее напряжение конденсатора. Но так как в данной статье мы ставим задачу по определению ёмкости, то пропустим описание маркировки напряжений.

Отличить электролитический конденсатор от неполярного можно по наличию символа «+» или «–» на его корпусе.

Цветовая маркировка

Описывать значение каждого цвета не имеет смысла, так как это понятно из следующей таблицы (рис. 8):

Цветовая маркировкаРис. 8. Цветовая маркировка

Запомнить символику кодовой и цветовой маркировки довольно трудно. Если вам не приходится постоянно заниматься подбором конденсаторов, то проще пользоваться справочниками или обратиться к информации, изложенной в данной статье.

Видео в помощь

Расчет параметров конденсатора онлайн

Не знаю как Вам, а мне никогда не нравилось работать и вычислять ёмкости конденсаторов. Больше всего раздражало  наличие в исходных  данных, ёмкостей в разных номиналах, в пикофарадах, в нанофарадах, микрофарадах.  Их приходилось переводить в Фарады,  что влекло за собой глупейшие ошибки в расчетах.

Конденсатор — в принципе это любая конструкция, которая может сохранять накопленный электрический потенциал.  Если же эта конструкция, не только хранит электроэнергию, но и генерирует её, то это уже источник электропитания и никак  не конденсатор.

Конструкция конденсаторов может быть любой, но чаще всего в практике используется плоский конденсатор, состоящий из двух проводящих пластин, между которыми находится какой либо диэлектрик.  Это связано с тем, что расчет ёмкости такого конденсатора ведется по известной формуле и простотой его создания. Свернув такой плоский конденсатор в рулон, мы получаем, что при фактическом скромном размере  «рулона», там находится плоский конденсатор, длиной в десятки сантиметров и обладающий повышенной ёмкостью.

Емкости конденсаторов некоторых форм известны, и мы дальше их рассмотрим.

Но хотелось бы заметить, что на наш взгляд, потенциал  развития  конденсаторов до  конца не завершен. Ведь форма конструкции какого либо конденсатора может быть любая, материалы из которого сделаны обкладки или диэлектрический слой  тоже могут быть любыми в пределах таблицы Менделеева. Единственная сложность, это невозможность теоретически просчитать потенциальную ёмкость, новосозданного (другой конструкции) конденсатора. Это усложняет нахождение самой лучшей конструкции конденсатора.

Есть хорошая книга по рассмотрению электрической ёмкости различных фигур. Для любопытных рекомендую поискать на просторах Интернета: Расчет электрической ёмкости в авторстве Ю.Я.Иоселль 1981 года

Данный бот рассчитывает параметры типовых форм конденсаторов. Отличие от других калькуляторов, присутствующих в интернете, это возможность задавать параметры, которые Вам известны, для того что бы рассчитать остальные.

И последнее нововведение, которое вы можете использовать. Вам не обязательно придется переводить заданные данные в  метры, фарады и т.д. Достаточно обозначить размерность данных. 

Например, если ёмкость известна и равно 100 пикофарад, то боту можно так и написать c=100пикофарад или с=100пФ, бот сам  переведет в Фарады.

Результат, тоже будет выдан оптимально визуальному восприятию пользователя. 

Это стало возможно с созданием бота Система единиц измерения онлайн

Плоский конденсатор. Параметры

Полученные характеристики плоского конденсатора
Самая простая и самая распространенная конструкция конденсатора это два плоских проводника разделенных тонким слоем диэлектрика ( то есть материала не проводящего электрический ток).

 

Ёмкость такого сооружения определяется следующей формулой.

 

где ε0 = 8,85.10-12 Ф/м — абсолютная диэлектрическая проницаемость

Если же конденсатор состоит не из пары пластин, а каого то n-ого количества плоских пластин то ёмкость такого «слоёного» конденсатора составит

Еще интереснее выглядит формуа такого «слоёного» конденсатора,  если в слоях находятся разные диэлектрики , разной толщины d

 

S- площадь одной из обкладок конденсатора ( предполагаем что другая обкладка имеет такую же площадь)

d- расстояние между обкладками

С- ёмкость конденсатора

Рассмотрим примеры

Задача: Ёмкость плоского конденсатора 350 нанофарад, расстояние между обкладками 1 миллиметр, и заполнено воздухом. Определить какова площадь обкладок?

Сообщаем боту что нам известно: C=350нФ, d=1мм. Так как у воздуха диэлектрическая проницаемость 1.00059 то e=1.00059. Поле площадь очистим, так именно его мы будем определять

Получаем  вот такой ответ

Полученные характеристики плоского конденсатора

d = 1 милиметр 
e = 1.00059 
C = 350 нанофарад 
S = 39.524703024086 м2 

 

Ответ, площадь обкладок конденсатора при таких значениях должна составлять почти 40 квадратных метров.

Цилиндрический  КОНДЕНСАТОР

     
Полученные характеристики цилиндрического конденсатора

Цилиндрический конденсатор представляет в простейшем случае две трубки разного диаметра вложенных друг в друга. разделенных диэлетриком

 

Иногда может получится так, что ёмкость цилиндрического конденсатора станет отрицательной величиной. Ничего страшного, это лишь говорит о том что Вы перепутали радиусы внешней и внутренней оболочки местами.

 

РАДИОЛЮБИТЕЛЬ, №3, 1925 год. Как рассчитать емкость конденсатора



РАДИОЛЮБИТЕЛЬ, №3, 1925 год. Как рассчитать емкость конденсатора

«Радиолюбитель», №3, март, 1925 год, стр. 63-64

Как рассчитать емкость конденсатора

С. И. Шапошников

Электроемкость

Известно, что существуют некоторые приборы, в которых можно накапливать или собирать электричество.

Такие приборы называются конденсаторами.

Возьмем несколько различных конденсаторов и присоединим их параллельно, например, к батарее в 80 вольт напряжением. Обкладки конденсаторов сейчас же получат заряды от полюсов батареи и зарядятся до того же напряжения, что и у батареи.

Отсоединяя теперь поочередно конденсаторы, не касаясь их контактов руками, будем касаться ими до зажимов чувствительного прибора. При этом мы заметим следующее: в момент присоединения конденсатора к прибору проскочит искорка, сопровождаемая более или менее громким треском, и прибор даст мгновенное отклонение стрелки 1). Так как эти отклонения будут различны, мы заключаем, что заряды разных конденсаторов, полученные от одной и той же батареи, будут различны, т.-е. одни конденсаторы получат большее количество электричества, другие — меньшее.

Электроемкостью, или, как говорят чаще, емкостью конденсатора, называется способность его воспринимать большее или меньшее количество электричества.

Для измерения емкостей установлена единица, т.-е. определенная емкость, называемая фарадой.

Емкостью в 1 фараду обладает такой конденсатор, который, будучи заряжен до напряжения в один вольт, при разряде даст ток, средняя величина которого будет равна одному амперу, при длительности прохождения тока в одну секунду.

Фарада — емкость весьма большая, почему ее разделили на миллион частей, называя такую единицу микрофарадой.

Но для целей радиотехники часто и микрофарада является слишком большой. Поэтому чаще пользуются третьей единицей, называемой сантиметром.

Микрофарада равна девятистам тысячам сантиметров.

Деля число сантиметров на 900.000, мы превратим емкость, выраженную в сантиметрах, в микрофарады. А разделив число микрофарад на 1.000.000, мы выразим ту же емкость в фарадах.

Расчет емкости

Простейший конденсатор состоит из двух пластин любого металла, разделенных одна от другой слоем любого непроводника или изолятора, или жке, как иначе его называют, диэлектрика.

Рис. 1. Параллельное соединение конденсаторов.

Пусть мы имеем два совершенно одинаковых конденсатора с одинаковой емкостью — С1 и С2. Соединим их параллельно к батарее Б (рис. 1). Очевидно, что емкость такой соединенной группы будет вдвое больше, чем емкость одного конденсатора, так как два конденсатора, при заряде, получат две порции электричества.

Что у нас изменилось, когда мы присоединили второй конденсатор? Диэлектрик остался прежний, толщина его тоже.

Изменилась величина пластин, или, как их называют, обкладок — вдвое. Во столько же раз изменилась и емкость системы. Поэтому, если взять такой же диэлектрик, как у двух первых конденсаторов, но обкладки его увеличить по площади вдвое, то мы получим один конденсатор, но с емкостью вдвое большей.

Итак: емкость конденсатора зависит от величины обкладок. Чем площадь обкладок меньше, тем меньше емкость конденсатора. Чем площадь обкладок больше, тем больше емкость конденсатора.

Рис. 2. Последовательное соединение конденсаторов.

Теперь соединим два одинаковых конденсатора последовательно, как показано на рис. 2-a. Измерение показывает, что емкость такой группы стала вдвое меньше, чем у каждого конденсатора в отдельности. Что же у нас изменилось?

Будем сближать оба конденсатора их внутренними обкладками. Оказывается, что от этого емкость группы изменяться не будет. Она будет оставаться все время вдвое меньшей, чем емкость одного конденсатора. То же будет и тогда, когда внутренние обкладки конденсаторов соединятся между собой, как это изображено на рис. 2-б. И, наконец, то же самое будет, если мы выдернем внутренние обкладки, как это показано на рис. 2-в. Теперь нам ясно. что у нас изменилось: толщина диэлектрика. Она увеличилась вдвое, поэтому емкость уменьшилась вдвое.

Итак: емкость конденсатора уменьшается с увеличением толщины диэлектрика и, наоборот, увеличивается с уменьшением толщины диэлектрика, при условии, что площадь обкладок остается прежней.

Теперь возьмем конденсатор, у которого диэлектрик — воздух. Такой воздушный конденсатор имеет некоторую емкость. Вставим в промежуток между обкладками его диэлектрик из парафиновой бумаги такой же толщины, какой был слой воздуха. Измерение доказывает, что емкость парафинового конденсатора увеличилась в 2,2 раза. Если парафин заменить стеклом такой же толщины, емкость увеличится в 5—6 раз против емкости воздушного конденсатора.

Следовательно, емкость конденсатора зависит от химических свойств диэлектрика.

Величину, показывающую, во сколько раз увеличилась емкость воздушного конденсатора при замене воздуха каким-либо диэлектриком называют диэлектрической постоянной этого диэлектрика.

Диэлектрическую постоянную будем обозначать буквой К.

Таблица №1
Величины диэлектрической постоянной K
Диэлектрик К
Воздух 1
Керосин. 2
Шеллак. 2
Каучук 2—2,7
Сера 2—4
Парафин 2,2
Парафиновое масло
Эбонит 2—3
Гуттаперча 2,4
Льняное масло 3,4
Слюда 4—8
Миканит
Стекло
Фарфор 4,5—5
Двойные цифры, напр. 4—8 для стекла, в каких пределах может изменяться диэлектрическая постоянная его, в зависимости от сорта.

Все вышеприведенные рассуждения можно свести в формулу, по которой легко производить расчет емкости разных конденсаторов.

  C =  K · Sкв. см.  =  K · S  см. ……….. (1)  
4π · dсм. 12,56 d

В этой формуле буквой С обозначается, как принято, емкость; К — диэлектрическая постоянная; S — площадь одной обкладки, выраженная в квадратных сантиметрах, и d — толщина диэлектрика, выраженная в сантиметрах (длины): π — число, равное 3,14.

Для лучшего усвоения приведем

примеры

Пример 1. Конденсатор стеклянный. Толщина стекла 3 мм. Обкладок две, каждая 15 см. длины и 10 см ширины.

По таблице № 1 диэлектрическая постоянная для стекла K = от 4 до 8; примем за среднее K = 6. Площадь обкладки S = 15 × 10 = 150 кв. см.; толщина стекла d = 3 мм., что переводим в сантиметры и получим: d = 0,3 см. По формуле получим:

  C =  6 × 150  = 239 см. емкости.
12,56 × 0,3

Пример 3. Стеклянная лейденская банка (см. рис. 3). Внутренний диаметр D = 5 см., высота обкладок h = 10 см; толщина стекла d = 2 мм. Так как наружная обкладка больше внутренней, то мы и привели внутренние размеры банки, так как при неравных по площади обкладках надо измерить меньшую из них.

Рис. 3. Лейденская банка.

Попрежнему: K = 6; d = 0,2 см. Площадь дна определяется по формуле, по которой рассчитывается сечение проводников (см. стр. 17).

S =  π · d2  =  π · d · d  =  3,14 · 5 · 5  = 19,6 кв. см.
4 4 4

Площадь цилиндрической части обкладки будет:

S = π · d · h = 3,14 · 5 · 10 = 157 кв. см.

Площадь всей внутренней обкладки будет: 19,6 + 157 = 176,6 кв. см.

Cбанки =  6 × 176,6  = 423 см.
12,56 × 0,2

Пример 3. Конденсатор парафиновый. Число пластин 10. Размер станиолевых листочков 3 × 9 см.

Рис. 4. Как определяется площадь пластины.

Для определениия толщины листка парафиновой бумаги, разрежем один листок на части, зажмём их между двумя досочками и измерим, сколько листочков приходится на 1 мм. Предположим 13. Тогда толщина диэлектрика будет ¹/13 мм, что, превратив в сантиметры, получим ¹/130 см. K — для парафина по табл. № 1 будет = 2,2. За площадь одного листа станиоля надо принять ту часть его, которая перекрывается следующим листком (см. рис. 4). Следовательно, длина его будет, напр., 6 см. Площадь одного листка будет 3 × 6 = 18 кв. см. Если бы листков было 2, то площадь обкладки равнялась бы 18 кв. см. Если листков взять 3 (см. рис. 4), то листок второй дает с первым площадь 18 кв. см., но он же дает такую же площадь и с третьим, следовательно, при 3 листках площадь будет вдвое больше и т. д. При десяти листках площадь будет в 9 раз больше. Следовательно, S = 9 . 18 = 162 кв. см., откуда:

C =  2,2 × 162  =  2,2 × 162 × 130  = 3.700 см.
12,56 × 1
     

Для подсчета емкости конденсатора, состоящего из нескольких пластин, можно воспользоваться и такой формулой.

  C =  K · S1 × (n — 1)   ……….. (2)  
12,56 · d

где S1 — площадь одной пластины, а n — число пластин. В последнем примере S1 = 18 кв. см.; n = 10, следов., n — 1 = 10 — 1 = 9, тогда по форм. (2) имеем:

C =  2,2 × 18 × 9  = 3.700 см.
   

т.-е. такой же результат, как и раньше.

Разобранные три примера поясняют все случаи расчетов емкости различных типов конденсаторов.

Мы умеем рассчитать конденсатор. Это важно при постройке его, чтобы иметь представление каких размеров его строить для данной емкости.

Но мы видели, что стекло различных сортов имеет диэлектрическую постоянную от 4 до 8. То же бывает и с другими электриками. Значит, мы можем произвести ошибку из-за величины K. Но, кроме того, мы можем ошибиться и при определении толщины диэлектрика или размеров пластинок. Следовательно, нам надо проверить наш расчет, произведя измерение емкости конденсатора, к чему мы и перейдем, дав представление о том, как ведет себя конденсатор в разных электрических цепях.


1) Чтобы опыт был заметен, емкости д.б. достаточно большие, напр. микрофарады, а прибор — миллиамперметр. (назад)


Формула емкости конденсатора, С

Если q – величина заряда одной из обкладок конденсатора, а – разность потенциалов между его обкладками, то величина C, равная:

   

называется емкостью конденсатора. Это постоянная величина, которая зависит то размеров и устройства конденсатора.

Рассмотрим два одинаковых конденсатора, разница между которым заключается только в том, что между обкладками одного вакуум (или часто говорят воздух), между обкладками другого находится диэлектрик. В таком случае при равных зарядах на конденсаторах разность потенциалов воздушного конденсатора будет в раз меньше, чем между обкладками второго. Значит емкость конденсатора с диэлектриком (C) в раз больше, чем воздушного ():

   

где – диэлектрическая проницаемость диэлектрика.

За единицу емкости конденсатора принимают емкость такого конденсатора, который единичным зарядом (1 Кл) заряжается до разности потенциалов, равной одному вольту (в СИ). Единицей емкости конденсатора (как и любой эклектической емкости) в международной системе единиц (СИ) служит фарад (Ф).

Формула электрической емкости плоского конденсатора

Поле между обкладками плоского конденсатора обычно считают однородным. Его однородность нарушается только около краев. При вычислении емкости плоского конденсатора этими краевыми эффектами часто пренебрегают. Это следует делать, если расстояние между пластинами мало в сравнении с их линейными размерами. Для расчета емкости плоского конденсатора применяют формулу:

   

где – электрическая постоянная; S – площадь каждой (или наименьшей) пластины; d – расстояние между пластинами.

Электрическая емкость плоского конденсатора, который содержит N слоев диэлектрика толщина каждого , соответствующая диэлектрическая проницаемость i-го слоя , равна:

   

Формула электрической емкости цилиндрического конденсатора

Цилиндрический конденсатор представляется собой две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполняет диэлектрик. Электрическая емкость цилиндрического конденсатора вычисляется как:

   

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

Формула электрической емкости сферического конденсатора

Сферическим конденсатором называют конденсатор, обкладками которого являются две концентрические сферические проводящие поверхности, пространство между ними заполнено диэлектриком. Емкость такого конденсатора находят как:

   

где – радиусы обкладок конденсатора.

Примеры решения задач по теме «Емкость конденсатора»

Конденсаторы

Электрическая емкость

      При сообщении проводнику заряда на его поверхности появляется потенциал φ, но если этот же заряд сообщить другому проводнику, то потенциал будет другой. Это зависит от геометрических параметров проводника. Но в любом случае потенциал φ пропорционален заряду q.

  . (5.4.1) 

      Коэффициент пропорциональности С называют электроемкостьюфизическая величина, численно равная заряду, который необходимо сообщить проводнику для того, чтобы изменить его потенциал на единицу.

  . (5.4.2) 

      Единица измерения емкости в СИ – фарада. 1 Ф = 1Кл/1В.

      Если потенциал поверхности шара

  (5.4.3) 

то

  (5.4.4) 

      По этой формуле можно рассчитать емкость Земли. Если диэлектрическая проницаемость среды ε = 1 (воздух, вакуум) и  то имеем, что CЗ = 7·10–4 Ф или 700 мкФ.

      Чаще на практике используют более мелкие единицы емкости: 1 нФ (нанофарада) = 10–9 Ф и 1пкФ (пикофарада) = 10–12 Ф.

      Необходимость в устройствах, накапливающих заряд, есть, а уединенные проводники обладают малой емкостью. Опытным путем было обнаружено, что электроемкость проводника увеличивается, если к нему поднести другой проводник – за счет явления электростатической индукции.

      Конденсатор – это два проводника, называемые обкладками, расположенные близко друг к другу.

      Конструкция такова, что внешние, окружающие конденсатор тела, не оказывают влияние на его электроемкость. Это будет выполняться, если электростатическое поле будет сосредоточено внутри конденсатора, между обкладками.

      Конденсаторы бывают плоские, цилиндрические и сферические.

      Так как электростатическое поле находится внутри конденсатора, то линии электрического смещения начинаются на положительной обкладке, заканчиваются на отрицательной, и никуда не исчезают. Следовательно, заряды на обкладках противоположны по знаку, но одинаковы по величине.

      Емкость конденсатора равна отношению заряда к разности потенциалов между обкладками конденсатора:

  (5.4.5) 

      Помимо емкости каждый конденсатор характеризуется Uраб (или Uпр.) – максимальное допустимое напряжение, выше которого происходит пробой между обкладками конденсатора.

Соединение конденсаторов

      Емкостные батареи – комбинации параллельных и последовательных соединений конденсаторов.

      1) Параллельное соединение конденсаторов (рис. 5.9):

Рис. 5.9

      В данном случае общим является напряжение U:

     .

Суммарный заряд:

Результирующая емкость:

      Сравните с параллельным соединением сопротивлений R:

.

      Таким образом, при параллельном соединении конденсаторов суммарная емкость

.

Общая емкость больше самой большой емкости, входящей в батарею.

      2) Последовательное соединение конденсаторов (рис. 5.10):

      Общим является заряд q.

Рис. 5.10

            или    , отсюда

  (5.4.6) 

      Сравните с последовательным соединением R:

      Таким образом, при последовательном соединении конденсаторов общая емкость меньше самой маленькой емкости, входящей в батарею:

Расчет емкостей различных конденсаторов

1. Емкость плоского конденсатора

Напряженность поля внутри конденсатора (рис. 5.11):

Рис. 5.11

Напряжение между обкладками:

где  – расстояние между пластинами.

Так как заряд , то

  . (5.4.7) 

      Как видно из формулы, диэлектрическая проницаемость вещества очень сильно влияет на емкость конденсатора. Это можно увидеть и экспериментально: заряжаем электроскоп, подносим к нему металлическую пластину – получили конденсатор (за счет электростатической индукции, потенциал увеличился). Если внести между пластинами диэлектрик с ε, больше, чем у воздуха, то емкость конденсатора увеличится.

      Из (5.4.6) можно получить единицы измерения ε0:

  (5.4.8) 

.

2. Емкость цилиндрического конденсатора

      Разность потенциалов между обкладками цилиндрического конденсатора, изображенного на рисунке 5.12, может быть рассчитана по формуле:

где λ – линейная плотность заряда,R1 иR2 – радиусы цилиндрических обкладок,l– длина конденсатора, .

Рис. 5.12

Тогда, так как , получим

  (5.4.9) 

      Понятно, что зазор между обкладками мал:  то есть

Тогда

  (5.4.10) 

3. Емкость шарового конденсатора (рис. 5.13)

Рис. 5.13

      Из п. 3.6 мы знаем, что разность потенциала между обкладками равна:

Тогда, так как , получим

.

      Это емкость шарового конденсатора, где R1 и R2 – радиусы шаров.

      В шаровом конденсаторе    – расстояние между обкладками. Тогда

  (5.4.11) 

      Таким образом, емкость шарового конденсатора с достаточной степенью точности можно рассчитать так же, как и емкость плоского, и цилиндрического конденсаторов.


формула, в чем измеряется и как, от чего зависит емкость

В схемах электронных устройств конденсаторы выполняют большое количество полезных функций. Хотя конструкция этих приспособлений остаётся максимально простой. Но надо внимательно изучить ёмкость конденсатора и сами устройства, чтобы узнать, какого эффекта можно от них добиться.

Что это такое

Конденсатор — устройство, внутри которого сгущается или собирается электрический заряд в определённых количествах. Можно назвать это приспособление своеобразным аккумулятором. Отличие от существующих аналогов — в готовности сразу отдать всё накопленное, буквально в несколько секунд. Ещё одна отличительная черта — отсутствие внутри источника ЭДС. Как найти ёмкость, будет рассказано далее.

Возможные модели

Для чего нужен

Эти устройства отличаются также широкой сферой применения. Вот лишь некоторые допустимые варианты:

  1. Хранение аналоговых сигналов.
  2. Сохранение цифровых данных.
  3. Сфера телекоммуникационной связи. В этом случае главная функция — регулировка частоты, настройка профессионального оборудования.
  4. Использование при создании различных источников питания.
  5. Сглаживание выпрямленного напряжения на выходе устройств. Другой вопрос — в чём измеряется ёмкость конденсаторов.

Ещё одна возможная функция — генерация высокого напряжения, которое во много раз больше по сравнению с входными параметрами. Конденсаторы могут быть отличным хранилищем для электронов. Даже при отключении цепи от заряда энергия продолжает сохраняться внутри, на протяжении длительного времени.

Разные габариты

Принцип действия

Основные элементы любого конденсатора — это две проводящие обкладки. У каждой из них — свой электрический заряд, знаки у них противоположные. Этот заряд сохраняется благодаря диэлектриком, который разделяет обкладки.

В конденсаторах используется несколько разновидностей материалов в качестве изоляции. Это касается таких решений:

  • Полистирол;
  • Тантал;
  • Слюд;
  • Керамика.

Воздух вместе с бумагой и пластиком тоже популярные материалы, с помощью которых создают конденсаторы. Благодаря их применению обкладки внутри не соприкасаются друг с другом.

Электролитические изделия

Характеристики

На корпусе устройства обычно пишут о том, какие параметры для него характерны. Из других важных сведений из маркировки — дата выпуска, наименование фирмы производителя, тип конденсатора.

  • Показатель номинальной ёмкости.

Интересно. Один из самых важных. ГОСТ 2.702 — основной документ, регулирующий это направление. На схемах без указания единиц измерения пишут ёмкость, если она находится в пределах от 0 до 9 999 пФ. Если диапазон больше — то о микрофарадах обязательно упоминают. На самом конденсаторе соответствующая маркировка тоже стоит.

  • Отклонения от номинального значения.
  • Номинальное напряжение. Благодаря ему проще понять, как определить ёмкость конденсатора, формула которой остаётся одинаковой.

Для работы рекомендуется брать конденсаторы, у которых есть некоторый запас относительно данного параметра. С меньшим значением применять приборы не рекомендуют. Иначе диэлектрик пострадает от пробоя, устройство выйдет из строя раньше указанного времени.

  • Рабочие температуры, постоянный и переменный ток — характеристики дополнительные, информация о них не всегда выносится на этикетку.
  • Конденсаторы бывают однофазными и трёхфазными, для внутренней или наружной установки.

Внутреннее устройство

Величина заряда конденсатора

Как уже говорилось, конденсаторы — это электронные устройства, главное предназначение которых — накопление заряда в определённых количествах. Эта способность зависит от другой главной характеристики, получившей название ёмкости.

Её можно определить по формуле:

C = q/U.

Это как соотношение между количеством электрического заряда и напряжением. Самое простое объяснение, какой может быть ёмкость конденсатора, формула через площадь у которой несколько иная.

Керамические

В чём измеряется

Для этого используются величины, названные фарадами и микрофарадами. В честь учёного, который открыл соответствующее явление.

Разные устройства

Формула ёмкости

Основная формула уже была описана выше. Ёмкость относят к величинам постоянного характера. Её определяют другие параметры, например — размер конденсатора, конструктивные особенности.

За единицу ёмкости принимают ёмкость конденсатора, которому хватает единичного заряда для получения разности потенциалов в 1 Вольт. Определять конечные цифры благодаря этому очень просто.

Горизонтальные

Плоского

Обычно между обкладками внутри плоского конденсатора создаётся так называемое однородное поле. Только около краёв подобное свойство может быть нарушено. Этими эффектами у краёв часто пренебрегают, когда организуют расчёты. Но такой подход допустим, только если расстояние между пластинами достаточно маленькое по сравнению с линейными размерами.

Плоский конденсатор отличается ёмкостью, которую считают по формуле:

C = (Ee0S)/d.

E0 — постоянная электрическая величина.

S — площадь каждой пластины. Часто учитывают детали конструкции с минимальной площадью.

D — обозначение расстояния между пластинами.

Другое дело — когда конструкцию строят на нескольких слоях диэлектрика. Тогда их тоже включают в формулу, обычно добавляют к знаменателю. Без объёма в такой ситуации тоже не обойтись.

Особенности применения

Сферического

Сферический — это конденсатор, обкладки которого выполнены в виде двух сферических проводящих поверхностей. Диэлектрик заполняет пространство между указанными выше деталями. В таком случае формула в знаменателе содержит дополнительные обозначения R — радиус каждой из пластин.

 

Суперконденсаторы

Цилиндрического

В данном случае пластины выглядят как две соосные или коаксиальные цилиндрические поверхности с проводящим эффектом. При этом радиус у каждого элемента разный. И здесь пространство между разными частями заполнено диэлектриком. L — обозначение высоты цилиндра. И к формуле добавляют символ для диаметра. Его измеряют отдельно для обкладки внутри и снаружи.

Назначение

Как с помощью закона Гаусса рассчитать ёмкость конденсатора?

Главное — чтобы изначально присутствовала ёмкость с заданной геометрией у конденсатора. Остаётся вставить в стандартную формулу разность между потенциалами. Благодаря этому уменьшается общий уровень нагрузки, который обозначают как Q.

Соотношения между полями E и V применяют для поиска характеристик, которые остались неизвестными для формулы. Закон Гауса — универсальный инструмент, упрощающий любые вычисления в этой сфере. Измеряться так могут многие показатели.

Разнообразие выбора

Эксплуатационные характеристики

Не идеальные, но реальные конденсаторы обладают рядом дополнительных характеристик помимо тех, о которых сказано выше. Среди них:

  1. Зависимость между ёмкостью и температурой.
  2. Потери диэлектрического характера.
  3. Сопротивление материала, из которого изготовлены обкладки.
  4. Ток утечки.
  5. Уровень полярности.
  6. Номинальное напряжение.

Важно разобраться, какой источник может быть у потерь. Но для этого необходимо разобраться с таким понятием, как графики синусоидного тока, различные направления этого вида энергии. В обкладках ток равен нулю, когда конденсатор набрал максимальный заряд. Напряжение в этом случае у изделия отсутствует. То есть, по фазе напряжение вместе с током сдвигаются на угол в 90 градусов. Идеальная ситуация — когда у конденсатора появляется только реактивная мощность.

Важно. Но реальность такова, что у обкладок появляется собственное сопротивление. Часть энергии нужна, чтобы температура диэлектрика повысилась до определённого уровня. Из-за этого и появляются потери внутри конструкции. Эта характеристика в большинстве случаев остаётся незначительной, но в некоторых ситуациях пренебрегать ей не получится.

Тангенс угла диэлектрических потерь — главная единица измерения, применяемая в этом случае. Это соотношение между активной и реактивной разновидностями мощности. Измерение величины возможно, но только в теоретическом плане. Иначе рассчитать результаты невозможно.

Переменный вид

Каким ещё бывает техническое исполнение конденсаторов?

Постоянные и переменные, подстроечные — группы конденсаторов, которые выделяются в зависимости от возможности регулировать основные рабочие параметры. Форма позволяет выделить плоские и цилиндрические, сферические разновидности. Но тип диэлектрика — главное свойство, по которому чаще всего проводят классификацию.

Импортные и отечественные разработки

Бумажные

Бумага, чаще всего — промасленная — вот главный диэлектрик для таких ситуаций. Конденсаторы данного вида известны крупными габаритами. Без промасливания можно изменить характеристику в меньшую сторону. Обычно служат устройствами со стабилизирующей и накопительной функциями. Но из современной электроники их всё чаще вытесаняют плёночные аналоги, которые считают более современными.

Если промасливание отсутствует, появляется серьёзный недостаток — реакция на влажность воздуха, даже если упаковка остаётся абсолютно герметичной. Энергопотери увеличиваются при наличии промокшей бумаги.

Разные характеристики

Диэлектрики-органические плёнки

Выполняются из органических полимеров, например:

  • Фоторопласт.
  • Полистирол.
  • Полипропилен.
  • Полисульфон.
  • Поликарбонат.
  • Полиамид.
  • Полиэтилентерифталат.

Размеры таких конденсаторов более компактные, если сравнить с предыдущим вариантом. При этом диэлектрические потери не становятся больше, даже если влажность увеличивается. Но при перегреве многие устройства часто выходят из строя. А если недостаток отсутствует — приобретение прибора связано с дополнительными расходами.

Твёрдые неорганические материалы

Примеры — стекло и керамика, слюда.

Стабильность, линейность указанных характеристик — главное преимущество. Некоторые устройства реагируют даже на уровень радиации окружающей среды. Но иногда такая зависимость может стать и проблемой. Чем менее выражены недостатки — тем дороже стоит устройство.

Оксидные диэлектрики

Подходят для производства танталовых и твердотельных конденсаторов, моделей из алюминия. Отличаются такой характеристикой, как полярность. При неправильном подключении могут быстро выйти из строя. То же касается ситуации с высоким номиналом напряжения. Но зато это компактные устройства со стабильной работой, достаточными показателями по ёмкости. Могут проработать около 60 тысяч часов, если эксплуатировать устройство правильно.

Маркировка конденсаторов

Ёмкость вместе с номинальным напряжением — характеристики, которые должны быть отражены в маркировке. Ещё применяют циферно-буквенную разновидность обозначений для основных параметров.

Интересно. В российской практике существует четыре буквы для обозначения устройств.

Первая буква К позволяет понять, что перед покупателем — именно конденсатор. Далее идёт цифра для обозначения разновидности применяемого диэлектрика. Следующим указывают назначение, тоже в виде буквы. Последние значки могут иметь разное назначение.

Эксплуатация

Выбор и эксплуатация

Главное — использовать приборы в режимах, не превышающих номинальные значения. Тогда никаких дефектов и проблем появиться не должно.

Обратите внимание. Электрохимические процессы диэлектрика — главная причина старения основных элементов при воздействии постоянного напряжения. Причина — постоянный ноль, увеличение влажности и температуры в окружающей среде. Вид диэлектрика, конструктивное исполнение определяют, как поведёт себя то или иное устройство в этих условиях.

Ионизационные процессы станут причиной старения в случае с переменным напряжением, импульсными режимами.

Защищённые керамические конденсаторы считаются наиболее прочными и надёжными моделями из всех. Либо стоит отдавать предпочтение оксидно-полупроводниковым вариантам. Каждый из них гарантирует максимальный срок службы.

Со временем любой конденсатор теряет ёмкость. Это нормальный процесс, проходящий в оборудовании. Поэтому не рекомендуется размещать устройства с другими предметами, которые подвержены сильному нагреву. Электролиты могут стать слабым местом для любой электроники. Качество детали во многом зависит от того, какого выбрать производителя. Но такая проблема заслуживает отдельного разговора.

Отправить ответ

avatar
  Подписаться  
Уведомление о