Основные свойства строительных материалов – Раздел 1.Роль строительного материала на стадиях проектирования, строительства и эксплуатации сооружений. Основные свойства строительных материалов Основные свойства строительных материалов

Глава 1. Основные свойства строительных материалов

§ 1. Физические свойства

Строительные материалы, применяемые при возведе­нии зданий и сооружений, характеризуются разнообраз­ными свойствами, которые определяют качество матери­алов и области их применения. По ряду признаков основ­ные свойства строительных материалов могут быть раз­делены на физические, механические и химические.

Физические свойства материала характеризуют его строение или отношение к физическим процессам окру­жающей среды. К физическим свойствам относят массу, истинную и среднюю плотность, пористость, водопоглощение, водоотдачу, влажность, гигроскопичность, водо­проницаемость, морозостойкость, воздухо-, паро- и газо­проницаемость, теплопроводность и теплоемкость, огне­стойкость и огнеупорность.

Масса— совокупность материальных частиц (атомов, молекул, ионов), содержащихся в данном теле

Истинная плотность— отношение массы к объему материала в абсолютно плотном состоянии, т. е. без пор и пустот.

Однако большинство строительных материалов име­ет поры, поэтому у них средняя плотность всегда меньше истинной плотности. Лишь у плотных материалов (стали, стекла, битума и некоторых других) истинная и средняя плотности практически равны, так как объем внутренних пор у них весьма мал.

Средняя плотность— физическая величина, определя­емая отношением массы образца материала ко всему за­нимаемому им объему, включая имеющиеся в нем поры и пустоты. Среднюю плотность рт(кг/м3, г/см3) вычис­ляют по формуле:

где т — масса материала в естественном состоянии, кг или г; V — объем материала в естественном состоянии, м

3 или см3.

Средняя плотность не является величиной постоянной и изменяется в зависимости от пористости материала. Искусственные материалы можно получать с необходи­мой средней плотностью, например меняя пористость, по­лучают бетон тяжелый со средней плотностью 1800 — 2500 кг/м3 или легкий со средней плотностью 500 — 1800 кг/м3.

На величину средней плотности влияет влажность ма­териала: чем выше влажность, тем больше средняя плот­ность. Среднюю плотность материалов необходимо знать для расчета их пористости, теплопроводности, теплоем­кости, прочности конструкций (с учетом собственной массы) и подсчета стоимости перевозок материалов.

Для сыпучих материалов (цемент, песок, щебень, гра­вий и др.) определяют насыпную плотность. В объем та­ких материалов включают не только поры в самом материале, но и пустоты между зернами или кусками мате­риала.

Пористостью материаланазывают степень заполне­ния его объема порами. Пористость П дополняет плот­ность до 1 или до 100 % и определяется по формулам:

П=1- рm

или П =(1 — рm./р) 100%.

Пористость различных строительных материалов ко­леблется в значительных пределах и составляет для кир­пича 25 — 35 %, тяжелого бетона 5 — 10, газобетона 55 -85, пенопласта 95 %, пористость стекла и металла равна нулю.

Плотность и пористость в значительной степени опре­деляют такие свойства материалов, как водопоглощение, водопроницаемость, морозостойкость, прочность, тепло­проводность и др.

Водопоглощение— способность материала впитывать воду и удерживать ее. Величина водопоглощения опреде­ляется разностью массы образца в насыщенном водой и абсолютно сухом состояниях. Коэффициент размягчения для разных материалов колеблется от 0 (необожженные глиняные материалы) до 1 (стекло, сталь, битум). Материалы с коэффициен­том размягчения не менее 0,8 относят к водостойким. Их разрешается использовать в строительных конструк­циях, находящихся в воде и в местах с повышенной влажностью.

Влажность материала определяется содержанием вла­ги, отнесенным к массе материала в сухом состоянии. Влажность материала зависит как от свойств самого ма­териала (пористости, гигроскопичности), так и от окру­жающей его среды (влажность воздуха, наличие контак­та с водой).

Влагоотдача— свойство материала отдавать влагу окружающему воздуху, характеризуемое количеством во­ды (в процентах по массе или объему стандартного об­разца), теряемой материалом в сутки при относительной влажности окружающего воздуха 60 % и температуре 20 °С.

Величина влагоотдачи имеет большое значение для многих материалов и изделий, например стеновых пане­лей и блоков, мокрой штукатурки стен, которые в про­цессе возведения здания обычно имеют повышенную влажность, а в обычных условиях благодаря влагоотдаче высыхают: вода испаряется до тех пор, пока не устано­вится равновесие между влажностью материала стен и влажностью окружающего воздуха.

Гигроскопичностьюназывают свойство пористых ма­териалов поглощать определенное количество воды при повышении влажности окружающего воздуха. Древесина и некоторые теплоизоляционные материалы вследствие гигроскопичности могут поглощать большое количество воды, при этом увеличивается их масса, снижается проч­ность, изменяются размеры. В таких случаях для дере­вянных и ряда других конструкций приходится применять защитные покрытия.

Водопроницаемость— свойство материала пропускать воду под давлением. Величина водопроницаемости ха­рактеризуется количеством воды, прошедшей в течение 1 ч через 1 см2площади испытуемого материала при по­стоянном давлении. К водонепроницаемым материалам относятся особо плотные материалы (сталь, стекло, би­тум) и плотные материалы с замкнутыми порами (на­пример, бетон специально подобранного состава).

Морозостойкость— свойство насыщенного водой ма­териала выдерживать многократное попеременное за­мораживание и оттаивание без признаков разрушения и значительного снижения прочности.

Разрушение материала наступает только после многократного попеременного замораживания и оттаивания.

Морозостойкость имеет большое зна­чение для стеновых материалов, систематически подвер гающихся попеременному замораживанию и оттаиванию, а также для материалов, применяемых в фундаментах и кровельных покрытиях.

Паро- и газопроницаемость — свойство материала пропускать через свою толщу под давлением водяной пар или газы (воздух). Все пористые материалы при наличии незамкнутых пор способны пропускать пар или газ.

Воздухопроницаемость материалов следует учитывать при применении их в наружных стенах и покрытиях зданий, а газопроницаемость — при применении их в конст­рукциях специальных сооружений (например, газголь­дерах).

Теплопроводность— свойство материала передавать через толщу теплоту при наличии разности температур на поверхностях, ограничивающих материал.

Знать теплопроводность материала необходимо при теплотехническом расчете толщины стен и перекрытий отапливаемых зданий, а также при определении требуе­мой толщины тепловой изоляции горячих поверхностей, например трубопроводов, заводских печей и т. д.

Теплоемкость— свойство материала поглощать при нагревании определенное количество теплоты и выделять ее при охлаждении.

Теплоемкость материалов учитывают при расчетах теплоустойчивости стен и перекрытий отапливаемых зда­ний, подогрева составляющих бетона и раствора для зим­них работ, а также при расчете печей.

Огнестойкость— способность материала противосто­ять действию высоких температур и воды в условиях пожара. По степени огнестойкости строительные матери­алы делят на несгораемые, трудносгораемые и сгора­емые.

Несгораемые материалы под действием огня или вы­сокой температуры не воспламеняются, не тлеют и не обугливаются. К этим материалам относят природные каменные материалы, кирпич, бетон, сталь. Трудносгораемые материалы под действием огня с трудновоспла-меняются, тлеют или обугливаются, но после удаления источника огня их горение и тление прекращаются. При­мером таких материалов могут служить древесно-цементный материал фибролит и асфальтовый бетон. Сгорае­мые материалы под воздействием огня или высокой тем­пературы воспламеняются и продолжают гореть после удаления источника огня. К этим материалам в первую очередь следует отнести дерево, войлок, толь и рубероид.

Огнеупорностьюназывают свойство материала вы­держивать длительное воздействие высокой температуры, не расплавляясь и не деформируясь. По степени огне­упорности материалы делят на огнеупорные, тугоплав­кие и легкоплавкие.

Огнеупорные материалы способны выдерживать про­должительное воздействие температуры свыше 1580°С. Их применяют для внутренней облицовки промышленных печей (шамотный кирпич). Тугоплавкие материалы вы­держивают температуру от 1350 до 1580°С (гжельский кирпич для кладки печей). Легкоплавкие материалы раз­мягчаются при температуре ниже 1350 °С (обыкновенный глиняный кирпич),

Основные свойства строительных материалов

1 .Классификация стр. Мат.

Строительные материалы и изделия классифицируют по назначению, виду материла и способу получения:

  • по назначению: конструкционные, отделочные, гидроизоляционные, теплоизоляционные, акустические, антикоррозионные, герметизирующие;

  • по виду материала: природные каменные, лесные, полимерные, металлические, керамические, стеклянные, искусственные каменные и т.д.;

  • по способу получения: природные и искусственные.

2.Состав и структура стр.Мат.

Состав материала: химический, минеральный (минералогический), фазовый (твердый, жидкий, газообразный) зависит в большей степени от сырья, которое было использовано и в меньшей – от технологии изготовления изделий.

Структуру материала изучают на микроуровне при помощи микроскопов и на макроуровне – визуально.

Строительные материалы, в частности бетоны, могут иметь различную макроструктуру: ячеистую (газо-, пенобетон), зернистую (например, перлитобетон), волокнистую (например, гипсоволокнистый бетон, шифер) или макроструктуру, представленную сочетанием этих структур.

Макроструктура материалов:

плотная (стекло), искусственная

ячеистая (пеносиликат), мелкопористая (кирпич), волокнистая (древесина), слоистая (пластики), рыхлозернистая (песок, щебень, гравий) зависит от технологии получения материала и изделия. Так, например, имея одно и то же основное исходное сырье – глину и изменяя технологию, можно получить облицовочные плитки плотной структуры, стеновой мелкопористый кирпич и теплоизоляционный ячеистый – керамзит.

3. Общефизические свойства.

К общефизическим свойствам относятся: истинная плотность, средняя плотность и пористость материала.

Истинная плотность (r) – масса единицы объема вещества в абсолютно плотном состоянии, без пор и пустот.

, (1)

Средняя плотность

(rср) – масса единицы объема материала (изделия) в естественном состоянии с пустотами и порами

, (2)

По величине истинной и средней плотности рассчитывают общую пористость (Пп) материала в %

(3)

4. Химические свойства.

Химические свойства характеризуют способность материала к химическим взаимодействиям с другими веществами. Возможность химических и физико-химических процессов определяется наличием у строительных материалов таких свойств, как химическая активность, растворимость, способность к кристаллизации и адгезии.

Химическая активность может быть положительной, если процесс взаимодействия приводит к упрочнению структуры (образование цементного, гипсового камня), и отрицательной, если протекающие реакции вызывают разрушение материала (коррозионное действие кислот, щелочей, солей).

Химическая или коррозионная стойкость – это свойство материалов противостоять разрушающему действию жидких и газообразных агрессивных сред.

5. Механические свойства.

Механические свойства характеризуют поведение материалов при действии нагрузок различного вида (растягивающей, сжимающей, изгибающей и т.д.).

Прочность ¾ свойство материала сопротивляться внутренним напряжениям, возникающим в материале под действием внешних факторов.

Твердость – способность материала сопротивляться проникновению в его поверхностные слои другого, более твердого тела определенной формы.

Истираемость ¾ свойство материала постепенно разрушаться тонкими слоями под действием истирающих усилий; оценивается потерей первоначальной массы образца, отнесённой к единице его площади или уменьшением толщины материала.

Износ – разрушение материала при совместном действии истирающей и ударной нагрузок.

Основные свойства строительных материалов

Водостойкость строительного материала – это способность материала сохранять свою проектную прочность при насыщении водой. Степень снижения прочности строительного материала под действием воды называется коэффициентом размягчения. Материалы, имеющие коэффициент выше 0,8 считаются водостойкими и могут применяться в воде или в местах с повышенной влажностью. Водостойкость строительных материалов – очень важный показатель именно для тех материалов, которые используются в воде или во влажных условиях. Некоторые материалы при насыщении водой могут увеличивать свои показатели по прочности, это обусловлено, прежде всего, химическим взаимодействием компонентов. Например, при насыщении водой цемент может превратиться в цементный камень. Водостойкость характеризуется коэффициентом размягчения kp = Rв/Rс, где Rв — прочность материала насыщенного водой, а Rс — прочность сухого материала. Меняется kp от 0 (размокающие глины) до 1 (металлы). 

Водопоглощение строительного материала – это способность материала впитывать и удерживать влагу. Измеряется водопоглощение отношением объема или массы впитанной влаги к объему или массе строительного материала:wm = (m2-m1)/m1*100%,wv = m2-m1/V*100%Где
m2 — масса материала в насыщенном водой состоянии, кг; 
m1 — масса материала в сухом состоянии, кг;
V — объем материала в естественном состоянии, м3.Существует масса примеров, когда влаги в материале больше чем самого материала. Это происходит в том случае, когда удельный вес материала меньше плотности воды.Практически всегда избыточное водопоглощение приводит к избыточному наличию воды в стройматериале, что ведет к изменению очень важных качеств строительного материала, таких как прочность и теплопроводность. 

Влагоотдача строительного материала – это способность материала отдавать влагу, находящуюся в порах. Так, например, штукатурные растворы, отдавая лишнюю влагу, существенно изменяют свои показатели по прочности, стеновые пенобетонные блоки впитывают влагу из растворов, а потом отдают ее в атмосферу. Чем выше влажность воздуха и меньше температура, тем хуже происходит влагоотдача. Измеряется влагоотдача в процентах влаги, отдаваемой стройматериалом при среднестатистической относительной влажности воздуха 60% и температуре +20 °С. 

Основные свойства строительных материалов.

Основные свойства

 строительных материалов.

 

Применяя тот или иной материал в строительстве, нужно знать его физико-механические свойства и учитывать те условия, в которых этот материал будет работать в строительной конструкции.

Основные свойства строительных материалов можно разделить на несколько групп.

К первой группе свойств относят физические свойства материалов : удельный вес, объёмный вес, плотность и пористость. От них в большой степени зависят другие важные  в строительном отношении свойства строительных материалов.

Вторую группу составляют свойства, характеризующие отношение строительного материала к действию воды и связанному с нею действию мороза : водопоглощение, влажность и отдача влаги, гигроскопичность, водопроницаемость, водо- и морозостойкость.

К третьей группе относятся механические свойства материалов : прочность, твёрдость, истираемость и др.

В четвёртую группу объединены свойства, характеризующие отношение материалов к действию тепла : теплопроводность, теплоёмкость, огнестойкость и огнеупорность. Помимо основных, различают ещё специальные свойства, присущие лишь отдельным видам строительных материалов.

Способность некоторых материалов сопротивляться разрушающему действию кислот, щелочей, солей и газов носит общее название химической (или коррозионной) стойкости.

Особую группу составляют так называемые технологические свойства, которые характеризуют способность материала подвергаться механической обработке. Например, древесина является материалом, легко поддающимся обработке. Строителю приходится считаться с этим свойством при выборе того или иного материала.

 

Физические и химические свойства

строительных материалов.

 

Удельным весом называется вес материала в единице объёма в плотном состоянии ( без пор ).

Объёмным весом называется вес единицы объёма материала в естественном состоянии ( вместе с порами ).

Объёмный вес рыхлых материалов ( песка, щебня ), определяемый без вычета пустот между их частицами, называют насыпным весом.

Плотностью материала называется степень заполнения его объёма твёрдым веществом, из которого материал состоит.

Пористостью называется отношение объёма пор к общему объёму материала.

По величине воздушных пор материалы разделяют на мелкопористые (поры имеют размеры в сотые и тысячные доли миллиметра) и крупнопористые (размеры пор от десятых долей миллиметра до 1 — 2 мм).

Более крупные поры в изделиях или полости между кусками рыхло насыпанного сыпучего материала ( песок, щебень, гравий ) называют пустотами.

Пористость строительных материалов колеблется в очень широких пределах — от 0 ( сталь. стекло ) до 90 % ( плиты из минеральной ваты ).

Материал с высокой пустотностью и пористостью часто бывает наиболее лучшим теплоизоляционным материалом.

Водопоглощением называется степень заполнения объёма материала водой.

Отношение прочности насыщенного водой материала к прочности его в сухом состоянии называется коэффициентом размягчения материала. Этот коэффициент является весьма важным показателем, так как он характеризует водостойкость материала, который в условиях работы в сооружении может подвергаться действию воды.

Коэффициент размягчения колеблется в пределах от нуля ( у глинянных необожжённых изделий до единицы ( у материалов, не изменяющих своей прочности от действия воды, — стекла, стали, битумов ).

Каменные материалы ( природные и искусственные ) нельзя применять в сырых местах, если коэффициент их размягчения меньше 0,8. Материалы с коэффициентом размягчения больше 0,8 называют водостойкими.

Влагоотдачей называется свойство материала отдавать воду при изменении условий в окружающей среде. Влагоотдачу выражают посредством скорости высыхания материалов — количеством воды ( а процентах от веса или объёма стандартного образца материала ), теряемым в сутки при относительной влажности окружающего воздуха 60 % и температуре 20 градусов.

Влажность материала — весовое содержание воды в материале строительных конструкций ( значительно ниже, чем их полное водопоглощение ).

Водопроницаемостью называется способность материала пропускать воду под давлением.

Морозостойкостью называется способность материала в насыщенном водой состоянии выдерживать многократное переменное замораживание и оттаивание без признаков разрушения и без значительного понижения прочности.

Плотные материалы без пор или с незначительной пористостью, поглощающие весьма мало воды, морозостойки.

Чтобы материал обладал морозостойкостью, коэффициент размягчения его должен быть не ниже 0,9.

Газопроницаемостью называется способность материала пропускать через свою толщу газ ( воздух ).

Газопроницаемость стен и других элементов сооружений можно значительно уменьшить, покрывая их масляными красками или битумными составами, а также производя их оштукатуривание.

Примеры : воздухопроницаемость кирпича —  0,35, цементно-песчанной штукатурки — 0,02, рубероида — 0,01.

Теплопроводностью называется способность материала передавать через свою толщу тепловой поток, возникающий вследствие разновидности температур на поверхностях, ограничивающих материал.

Степень теплопроводности очень важно знать для материалов. используемых при устройстве так называемых ограждающих конструкций зданий ( т.е. наружных стен, верхних перекрытий, полов в нижнем этаже ) и в особенности для теплоизоляционных материалов, назначение которых — способствовать сохранению тепла в помещениях и тепловых установках.

Коэффициент теплопроводности равен количеству тепла, в килокалориях, проходящего через стену толщиной 1 м, площадью 1 кв.м. за 1 час при разности температур на двух противоположных поверхностях стен в 1 град.

Теплопроводность материала зависит от степени его пористости, характера пор, вида материала, влажности, объёмного веса и средней температуры. при которой присходит передача тепла.

У пористых материалов тепловой поток проходит через их массу и через поры, наполненные воздухом. Теплопроводность воздуха очень низка ( 0,02 ), вследствие чего он оказывает большое термическое сопротивление прохождению теплового потока. Коэффициент теплопроводности сухих пористых материалов является промежуточной величиной между коэффициентами теплопроводности их вещества и воздуха. Чем больше пористость ( т.е. чем меньше объёмный вес материала ), тем меньше коэффициент теплопроводности.

Величина пор материала также оказывает влияние на коэффициент его теплопроводности. Мелкопористые материалы менее теплопроводны, чем крупнопористые. Материалы с замкнутыми порами имеют меньшую теплопроводность, чем материалы с сообщающимися порами. Это объясняется тем, что при крупных и сообщающихся порах в них возникает движение воздуха, сопровождающееся переносом тепла ( конвекция ) и повышением суммарного коэффициента теплопроводности.

В таблице 1 приведены коэффициенты теплопроводности теплоизоляционных материалов и для сравнения — коэффициенты теплопроводности некоторых других строительных материалов.

 

Таблица 1.

Материалы

Объёмный вес,

 кг/куб.м.

Коэффициент теплопроводности, ккал/м.час.град

Минеральная вата

200 - 400

0,05 — 0,08

Торфяные плиты

300

0,08

Древесноволокнистые плиты

300

0,07

Пробковые плиты

150

0,04

Поропласты

20

0,03

Асбозурит

400 - 800

0,08 — 0,20

Газостекло

250 - 300

0,05 — 0,07

Совелит

350 - 500

0,08 — 0,10

Гранит

2600

2,5

Кирпич

1800

0,7

Бетон

2000 — 2400

1,10 — 1,30

 

Теплоёмкостью называют свойство материала поглощать определённое количество тепла при нагревании.

Коэффициент теплоёмкости представляет собой количество тепла в килокалориях, необходимое для нагревания 1 кг. данного материала на 1 градус.

Природные и искусственные каменные материалы имеют коэффициент теплоёмкости в пределах от 0,18 до 0,22, лесные материалы — от 0,57 до 0,65. У металлов коэффициент теплоёмкости относительно не высок, например, у стали он равен 0,11.

Теплоёмкость материалов имеет значение в строительстве при проверке теплоустойчивости стен и перекрытий и расчёте подогрева материалов для зимних бетонных и каменных работ, а также при расчёте печей.

Под теплоустойчивостью стен и перекрытий понимают их способность сохранять на внутренней поверхности более или менее постоянную температуру, несмотря на колебания теплового потока вследствие неравномерной работы отопления. Суточные колебания температуры в жилых зданиях не должны превышать 6 градусов.

При топке печей у поверхностей стен или перекрытий, обращённых внутрь здания, создаётся запас тепла, вследствие чего внутри помещений температура значительно не повышается. По окончании топки запас тепла, накопленный в стенах и перекрытиях, расходуется на подогрев воздуха, чем и выравнивается в помещениях температура воздуха.

Для стен и перекрытий жилых и отапливаемых зданий желательно применять материалы с возможно более низким коэффициентом теплопроводности и возможно более высоким коэффициентом теплоёмкости. Такими свойствами обладают, в частности, лесные материалы, которые широко применяют для стен и перекрытий отапливаемых зданий.

Удельная теплоёмкость каменных материалов ( камень, кирпич, бетон, шлак, стекло и др. ) находится в пределах 0,18 — 0,22. Лесные и другие органические материалы имеют значительно большие коэффициенты теплоёмкости, например:

 

шевелин………………………………………..

0,45

 

древесина сосны и ели……………………

0,65

 

древесина дуба………………………………

0,57

 

рубероид……………………………………….

0,36

 

камышит……………………………………….

0,36

 

торфяные плиты…………………………….

0,50.

 

Огнестойкостью называется способность материалов выдерживать без разрушения действие высоких температур и воды ( при пожарах ). По огнестойкости строительные материалы делят на три группы : несгораемые, трудносгораемые и сгораемые.

Огнеупорностью называют свойство материала противостоять длительному воздействию высоких температур, не расплавляясь.

При устройстве различных отопительных установок ( печей, труб, при обмуровке котлов и пр.) используются строительные материалы, которые могут не только выдерживать действие высоких температур, но и нести определённую нагрузку при постоянной высокой температуре.

Такие материалы делят на три группы : огнеупорные, выдерживающие действие температур от 1580 градусов и выше ( шамот, динас и др.) ; тугоплавкие, выдерживающие действие температур выше 1350 до 1580 градусов ( гжельский кирпич ) ; легкоплавкие — с огнеупорностью ниже 1350 градусов (например, обыкновенный глиняный кирпич).

Химической стойкостью называется способность материалов сопротивляться действию кислот, щелочей, солей, растворённых в воде, и газов.

Большая часть строительных материалов не обладает стойкостью к действию кислот и щелочей. Весьма нестойко в этом отношении, например, дерево. Битумы отличаются нестойкостью к действию  концентрированных растворов щелочей, а многие природные каменные материалы — к действию кислот (например, известняки, мраморы, доломиты и др.). Многие вяжущие материалы также плохо противостоят действию кислот.

Высокой сопротивляемостью действию щелочей и кислот обладают керамические материалы с очень плотным черепком ( например, облицовочные плитки, плитки для полов, канализационные трубы ), специальный кирпич для устройства канализационных коллекторов, материалы на основе пластмасс (трубы, плёнки) и др.

Долговечность является весьма важным свойством строительных материалов. Под долговечностью понимают способность материалов сопротивляться всей сумме атмосферных воздействий в эксплуатационных условиях ( изменение температур, влажности, влияние кислорода и других газов, находящихся в воздухе ).

Процесс естественного изменения свойств материалов под действием атмосферных факторов называется старением материалов. Например, керамические материалы и естественные каменные материалы относятся к долговечным материалам, а древесина — в условиях повышенной влажности — к быстростареющим.

 

Механические свойства.

 

Прочность —  свойство материала сопротивляться разрушению под действием напряжений, возникающих от нагрузки или других факторов.

Прочность строительных материалов характеризуется так называемым пределом прочности при сжатии или пределом прочности при растяжении.

Пределом прочности называют напряжение, соответствующее нагрузке, вызывающей разрушение образца материала.

Твёрдостью называется способность материала сопротивляться проникновению в него постороннего более твёрдого тела. Это свойство материала не всегда соответствует их прочности. Материалы с разными пределами прочности при сжатии могут обладать примерно одинаковой твёрдостью.

Шкала твёрдости минералов.

Таблица 2

Показатель твёрдости.

Минерал

1

Тальк или мел

2

Каменная соль или гипс

3

Кальцит или ангидрит

4

Плавиковый шпат

5

Апатит

6

Ортоклаз

7

Кварц

8

Топаз

9

Корунд

10

Алмаз

 

Истираемостью называют способность материала уменьшаться в весе и объёме под действием истирающих усилий.

Сопротивлением удару называется способность материала сопротивляться ударным воздействиям.

Упругостью называется свойство материала восстанавливать свою первоначальную форму и объём после прекращения действия внешних сил, под воздействием которых форма материалов изменяется в той или иной мере. Первоначально форма может восстанавливаться полностью при малых нагрузках и частично при больших. В последнем случае в материале имеются остаточные деформации.

Деформацией называется изменение формы или объёма твёрдого тела.

Пределом упругости считают напряжение, при котором остаточные деформации впервые достигают некоторой малой величины, устанавливаемой техническими условиями на данный материал. Это наибольшее напряжение, по достижении которого материал практически получает только упругие деформации, т.е. исчезающие после снятия нагрузки.

Пластичностью называют способность материала под влиянием действующих на него усилий изменять свои размеры и форму без образования трещин и сохранять их после снятия нагрузки.

Помимо материалов пластичных ( битумы, глиняное тесто и др. ) имеются материалы хрупкие, которые разрушаются сразу ( без предварительной деформации ), как только действующие на них усилия достигают величины разрушающих нагрузок.

 

Лекция №1 Общие сведения о строительных материалах и их основные свойства.

Строительные материалы. Лекции. 31

Общие сведения о строительных материалах.

В процессе строительства, эксплуатации и ремонта зданий и сооружений строительные изделия и конструкции из которых они возводятся подвергаются различным физико-механическим, физическим и технологическим воздействиям. От инженера-гидротехника требуется со знанием дела правильно выбрать материал, изделия или конструкцию которая обладает достаточной стойкостью, надёжностью и долговечностью для конкретных условий.

Строительные материалы и изделия, применяемые при строительстве, реконструкции и ремонте различных зданий и сооружений, делятся на природные и искусственные, которые в свою очередь подразделяются на две основные категории: к первой категории относят: кирпич, бетон, цемент, лесоматериалы и др. Их применяют при возведении различных элементов зданий (стен, перекрытий, покрытий, полов). Ко второй категории — специального назначения: гидроизоляционные, теплоизоляционные, акустические и др.

Основными видами строительных материалов и изделий являются: каменные природные строительные материалы из них; вяжущие материалы неорганические и органические; лесные материалы и изделия из них; металлические изделия. В зависимости от назначения, условий строительства и эксплуатации зданий и сооружений подбираются соответствующие строительные материалы, которые обладают определёнными качествами и защитными свойствами от воздействия на них различной внешней среды. Учитывая эти особенности, любой строительный материал должен обладать определёнными строительно-техническими свойствами. Например, материал для наружных стен зданий должен обладать наименьшей теплопроводностью при достаточной прочности, чтобы защищать помещение от наружного холода; материал сооружения гидромелиоративного назначения – водонепроницаемостью и стойкостью к попеременному увлажнению и высыханию; материал для покрытия дорого (асфальт, бетон) должен иметь достаточную прочность и малую истираемость, чтобы выдержать нагрузки от транспорта.

Классифицируя материалы и изделия, необходимо помнить, что они должны обладать хорошими свойствамиикачествами.

Свойство– характеристика материала, проявляющаяся в процессе его обработки, применении или эксплуатации.

Качество– совокупность свойств материала, обуславливающих его способность удовлетворять определённым требованиям в соответствии с его назначением.

Свойства строительных материалов и изделий классифицируют на три основные группы: физические, механические, химические, технологические и др.

К химическимотносят способность материалов сопротивляться действию химически агрессивной среды, вызывающие в них обменные реакции приводящие к разрушению материалов, изменению своих первоначальных свойств: растворимость, коррозионная стойкость, стойкость против гниения, твердение.

Физические свойства: средняя, насыпная, истинная и относительная плотность; пористость, влажность, влагоотдача, теплопроводность.

Механические свойства: пределы прочности при сжатии, растяжении, изгибе, сдвиге, упругость, пластичность, жёсткость, твёрдость.

Технологические свойства: удобоукладываемость, теплоустойчивость, плавление, скорость затвердевания и высыхания.

Физические и химические свойства материалов.

Средняя плотность ρ0массыmединицы объёмаV1абсолютно сухого материала в естественном состоянии; она выражается в г/см3, кг/л, кг/м3.

Насыпная плотность сыпучих материалов ρнмассыmединицы объёмаVн просушенного свободно насыпанного материала; она выражается в г/см3, кг/л, кг/м3.

Истинная плотность ρмассыmединицы объёмаVматериала в абсолютно плотном состоянии; она выражается в г/см3, кг/л, кг/м3.

Относительная плотность ρ(%) – степень заполнения объёма материала твёрдым веществом; она характеризуется отношением общего объёма твёрдого вещества V в материале ко всему объёму материала V1 или отношением средней плотности материала ρ0к её истинной плотности ρ: , или.

Пористость П — степень заполнения объёма материала порами, пустотами, газо-воздушными включениями:

для твёрдых материалов: , для сыпучих:

Гигроскопичность — способность материала поглощать влагу из окружающей среды и сгущать её в массе материала.

Влажность W(%) – отношение массы воды в материале mв=m1m к массе его в абсолютно сухом состоянии m:

Водопоглащение В – характеризует способность материала при соприкосновении с водой впитывать и удерживать её в своей массе. Различают массовое Вм и объёмное Во водопоглащение.

Массовое водопоглащение (%) – отношение массы поглощённой материалом воды mв к массе материала в абсолютно сухом состоянии m:

Объёмное водопоглащение (%) – отношение объёма поглощённой материалом воды mв/ρв к его объёму в водонасыщенном состоянии V2:

Влагоотдача – способность материала отдавать влагу.

Классификация основных свойств строительных материалов.

Слайд «Классификация свойств строительных материалов».

Классификация основных свойств строительных материалов:

Первая группа – физические свойства: объемная масса, плотность, пористость, гигроскопичность, водопоглащение

Вторая группа – механические свойства:

прочность, твердость, пластичность, упругость

Третья группа – свойства, характеризующие отношение

материалов к действию тепла: теплопроводность, теплоемкость,

огнеупорность, морозостойкость

Четвертая группа – свойства, характеризующие поведение

материалов в условиях пожара:

критическая температура, горючесть, воспламеняемость и т.д.

Физические свойства.

К физическим свойствам относятся весовые характеристики материала, его плотность, проницаемость для жидкостей, газов, тепла, радиоактивных излучений, а также способность материала сопротивляться агрессивному действию внешней эксплуатационной среды.

Под истинной плотностью понимают массу единицы объема абсолютно плотного материала:

где, m — масса материала, кг; V — объем материала в плотном состоянии, м3.

Под средней плотностью понимают массу единицы объема материала в естественном состоянии (с пустотами и порами):

Средняя плотность одного и того же вида материала может быть разной в зависимости от пористости и пустотности.

Сыпучие материалы (песок, щебень, цемент и др.) характеризуются насыпной плотностью — отношением массы зернистых и порошкообразных материалов ко всему занимаемому ими объему, включая и пространство между частицами. От плотности материала зависят его технические свойства, например, прочность, теплопроводность. Плотность зависит от пористости и влажности материала. С увеличением влажности плотность материала увеличивается.

Плотность некоторых строительных материалов

Материал

Средняя плотность 0, кг/м3

Истинная плотность , кг/м3

Пористость П, %

Пенополистирол

15-20

1050

86…81

Древесина:

1550

Сосна

400-600

74-61

Дуб

700-900

55-42

Бетоны:

не более 3000

Ячеистые

500-1200

84-60

Легкие

500-1800

84-40

Тяжелые

1800-2500

40-17

Асбестоцемент

1400-2200

2750

25-40

Красный кирпич

1600-1900

2500

36-24

Стекло оконное

2500

до 2500

0

Металлы:

Сталь Ст3

7800

7800

0

Алюминиевые сплавы

не более 2850

не более 2850

0

Пористотью (%) материала называют степень заполнения его объема порами:

Поры – мелкие ячейки в материале, заполненные воздухом или водой. Поры бывают открытые и закрытые, мелкие и крупные. По величине пористости можно судить приближенно, судить о других важных свойствах материала: плотности, прочности, водопоглощении, долговечности и др.

Пустотность — количество пустот, образующихся между зернами рыхлонасыпанного материала (песка, щебня и т.п.) или имеющихся в некоторых изделиях.

Некоторые материалы способны поглощать воду при увлажнении и отдавать ее при высушивании. Насыщение материала водой может происходить при на него воды в жидком состоянии или в виде пара. В связи с этим соответственно различают два свойства материала: гигроскопичность и водопоглощение.

Гигроскопичность — свойство материала поглощать водяные пары и воздуха и удерживать их. Она зависит от температуры воздуха, его относительной влажности, вида, количества и размера пор, а также от природы вещества.

Водопоглащение — способность материала впитывать и удерживать воду. Характеризуется оно количеством воды, поглощаемой сухим материалом, погруженным полностью в воду, и выражается в процентах от массы.

Отношение предела прочности при сжатии материала, насыщенного водой (R нас.) к пределу прочности при сжатии материала в сухом состоянии (R сух.) называется коэффициентом размягчения:

Этот коэффициент характеризует водостойкость материала. Для легкоразмокаемых материалов (глина) k =0, для материалов (металл, стекло), которые полностью сохраняют свою прочность при действии воды, k =1. Материалы с k > 0,8 относят к водостойким; материалы с k < 0,8 в местах, подверженных систематическому увлажнению, применять не разрешается.

Влагоотдача — способность материала отдавать влагу.

Воздухостойкость — способность материала длительно выдерживать многократное систематическое увлажнение и высушивание без значительных деформаций и потери механической прочности.

Водопроницаемость — способность материала пропускать воду под давлением. Водопроницаемость характеризуется количеством воды, прошедшей в течении 1ч через 1 м2 площади испытуемого материала при давлении 1 МПа. Плотные материалы (сталь, стекло) водонепроницаемы.

Механические свойства.

Механические свойства характеризуются способностью материала сопротивляться сжатию, растяжению, удару, вдавливанию в него постороннего тела и другим видам воздействий на материал с приложением силы.

Прочность — свойство материала сопротивляться разрушению под действием напряжений, возникающих от нагрузки. Материалы, находясь в сооружении, мо­гут испытывать различные нагрузки — сжатие, растяже­ние, изгиб, удар.

Прочность строительных материалов характеризу­ется пределом прочности. Пределом прочности (Па) называют напряжение, соответствующее нагрузке, вы­зывающей разрушение образца материала:

R=N/A,

где N – разрушающая сила, H; A – площадь попереч­ного сечения образца до испытания, м2.

Твердость — способность материала сопротив­ляться проникновению в него другого более твердого тела. Это свойство важно при обработке, а также при использовании его для полов, дорожных покрытий.

Деформация– изменение размеров и формы мате­риалов под нагрузкой.

Упругость – свойство материала восстанавливать после снятия нагрузки свою первоначальную форму и размеры.

Пластичность – свойство материала изменять свою форму под нагрузкой без появления трещин и со­хранять эту форму после снятия нагрузки. Все мате­риалы делятся на пластичные и хрупкие. Хрупкие ма­териалы разрушаются внезапно без значительной де­формации. Хруп­кие материалы хорошо сопротивля­ются только сжатию и плохо – растяжению, изгибу, удару.

Раздел 1. Основные свойства и оценка качества строительных материалов

Инженер-строитель должен уметь оценивать свойства строительных материалов с помощью числовых показателей и разбираться в методических принципах их определения. Свойство – это способность материала определенным образом реагировать на воздействие внешних или внутренних силовых, усадочных, тепловых и других факторов.

Основные свойства строительных материалов можно подразделить на физические, гидрофизические, механические, теплофизические и специальные.

Физические свойства.

К физическим свойствам относятся: истинная, средняя и насыпная средняя плотности, а также пористость.

Истинная плотность. Истинной плотностью r называется масса материала в единице объема в абсолютно плотном состоянии (1)

(1)

где r– истинная плотность, г/см3;

m – масса материала, г;

Va – объем в абсолютно плотном состоянии, см3.

Средняя плотность. Средней плотностью rо называется масса материала в единице объема в естественном состоянии (2)

(2)

где rо– средняя плотность, г/см3;

m – масса материала, г;

V – объем в естественном состоянии, см3.

Насыпная средняя плотность. Насыпная средняя плотность – это средняя плотность рыхлых сыпучих материалов, определяемая без вычета пустот между их частицами (3)

(3)

где rн– насыпная средняя плотность, г/см3;

m – масса материала, г;

Vн – объем в рыхло-сыпучем состоянии, см3.

Пористость. Пористостью называют отношение объема пор к общему объему материала (4)

(4)

где П – пористость,

Vп – объем пор,

V – общий объем материала.

Пористость может быть величиной безразмерной, или, при умножении на 100%, выражаться в процентах.

Поры – это мелкие ячейки в материале, заполненные воздухом или водой. Поры бывают открытые, сообщающиеся с окружающей средой, и замкнутые, с ней не сообщающиеся. По величине пористости можно приближенно судить о других важных свойствах материалов – плотности, прочности, водопоглощении, морозостойкости и др. Мелкие поры, заполненные воздухом, придают строительным материалам теплоизоляционные свойства. Пористость можно определить, зная истинную и среднюю плотности материалов (5).

(5)

Пористость строительных материалов колеблется в широких пределах: от 0 до 98%. Общая пористость складывается из открытой По и замкнутой Пз пористости (6).

(6)

Открытые поры увеличивают водопроницаемость и водопоглощение материала и ухудшают его морозостойкость. Открытую пористость можно определить по формуле 7

(7)

где м2 и м1 – масса образца в водонасыщенном и сухом состоянии, г;

rв– плотность воды, г/см3,

V – объем в естественном состоянии, см3.

Гидрофизические свойства.

Водопоглощение. Водопоглощением называют способность материала впитывать и удерживать воду при непосредственном контакте с ней. Водопоглощение определяют по разности масс образца материала в насыщенном водой и в сухом состоянии, и выражают в % от массы сухого материала (водопоглощение по массе Wm) или в % от объема образца (водопоглощение по объему Wv). Весовое водопоглощение Wmопределяется по формуле 8:

(8)

где м2 – масса материала в водонасыщенном состоянии,г;

м1 – масса материала в сухом состоянии, г.

Объемное водопоглощение Wvопределяется по формуле 9:

(9)

где м1 и м2 — масса материала в сухом и водонасыщенном состоянии,

rв– плотность воды, г/см3,

V – объем материала в естественном состоянии.

Водостойкость. Водостойкость – это способность материала при насыщении водой сохранять основные физико-механические свойства. Она характеризуется коэффициентом размягчения Кразм. (10), который представляет собой ношение предела прочности на сжатие водонасыщенного материала (Rcж. вод) к пределу прочности на сжатие сухого материала (Rсж. сух.).

(10)

При проектировании сооружений, подвергающихся воздействию воды, необходимо применять материалы с коэффициентом размягчения не ниже 0,8.

Причиной снижения прочности при увлажнении материала водой может быть:

  1. наличие в материале растворимых веществ, вымываемых водой.

  2. Если материал не содержит растворимых веществ, падение прочности

при увлажнении может быть связано с расклинивающим эффектом Ребиндера, связанным с расширением (расклиниванием) устьев микротрещин при проникании в них диполей воды.

Влажность. Влажностью называют весовое содержание воды в материале, выраженное в процентах.

Сорбционная влажность. Она характеризует способность материала поглощать пары воды из окружающего воздуха. Численно она равна влажности материала после окончания поглощения им водяного пара. С повышением давления пара (т.е. с увеличением относительной влажности воздуха при постоянной температуре) возрастает сорбционная влажность материала.

Капиллярное всасывание воды пористым материалом происходит, когда часть конструкции находится в воде. Оно характеризуется высотой поднятия уровня воды в капиллярах материала, количеством поглощенной воды и интенсивностью всасывания.

Высоту h поднятия жидкости в капилляре определяют по формуле Жюрена (11):

(11)

где σ – поверхностное натяжение,

θ – краевой угол смачивания,

ρ – плотность жидкости,

r – радиус капилляра,

g – ускорение свободного падения.

Водопроницаемость. Водопроницаемость – способность материала пропускать через себя воду под давлением. Характеристикой водопроницаемости служит количество воды, прошедшей в течение 1 часа через 1 см2 поверхности материала при заданном давлении воды, которое устанавливается стандартом в зависимости от вида материала.

Водонепроницаемость. Водонепроницаемостью называется способность материала не пропускать воду под давлением. Степень водонепроницаемости материалов зависит от их плотности и строения. Особо плотные материалы водонепроницаемы, материалы с замкнутыми мелкими порами практически также водонепроницаемы. Чем больше открытых пор, тем более проницаем для воды материал. Водонепроницаемость оценивается маркой материала по водонепроницаемости W, обозначающей одностороннее гидростатическое давление, выраженное в МПа, при котором образец – цилиндр из испытуемого материала еще не пропускает воду. Строительные материалы имеют марки по водонепроницаемости W 0,2 – 1,2.

Морозостойкость. Морозостойкостью считают способность материала в водонасыщенном состоянии выдерживать многократное переменное замораживание и оттаивание без признаков разрушения и значительного снижения прочности. Количественно морозостойкость оценивается маркой материала по морозостойкости. За марку материала по морозостойкости Мрз или F принимают наибольшее число циклов попеременного замораживания и оттаивания, которое выдерживают водонасыщенные образцы материала без снижения прочности при сжатии более 15%, и потери массы более 5%.

Разрушения в материале связаны с тем, что вода, находящаяся в его порах, при замерзании увеличивается в объеме более чем на 9 %. Определение степени морозостойкости материалов производится путем замораживания водонасыщенных образцов при to = (-15, -17)о в течение нескольких часов и их последующего оттаивания при to более 15 о С. не менее 6 часов. По степени морозостойкости материалы подразделяются на марки Мрз (или F) : 10, 15, 25, 35, 50, 100, 150, 200, 300 и выше.

Отправить ответ

avatar
  Подписаться  
Уведомление о