Несущая способность балки деревянной: Онлайн-калькулятор для расчета деревянных балок перекрытия – Расчет балки онлайн — Калькулятор балок перекрытия из дерева

Содержание

Расчет несущей способности и прогиба деревянных балок: Инструкции +Фото и Видео

Расчет прогибаРасчет несущей способности и прогиба деревянных балок. Для строительства деревянного дома потребуется провести расчет несущей способности деревянной балки. Не менее важное значение в терминологии строителей уделяется определению прогиба. Без хорошего математического анализа каждого из параметров невозможно выстроить красивый и надежный дом из бруса. Именно по этой причине перед началом строительства очень важно, чтобы был правильно рассчитан прогиб балок из дерева.

Такие расчеты будут залогом того, что ваша постройка будет надежной и качественной.

Что требуется для правильного расчета?

Расчет деревянной балки на прогиб и несущей способности не такая простая задача, как может показаться кому-то вначале. Чтобы понять, какое количество досок вам потребуется, а также, какого они должны быть размера, следует потратить много времени, или же просто использовать специальную программу-калькулятор для расчета.

Для начала следует замерить пролет, который вы хотите перекрыть деревянными балками, а после уделить особое внимание способу фиксации. Очень важно, как глубоко будут заходить в стену фиксирующие элементы. Только после проведения всех подобных операций вы сможете заняться расчетом несущей способности и прогиба деревянных балок и остальных параметров, которые не менее важны при строительстве.

Длина

Перед началом расчета прогиба и несущей способности узнайте, какова длина каждой доски из дерева. Такой параметр определен длиной пролета, и все же это еще не все. Все подсчеты должны быть выполнены с определенным запасом.

Обратите внимание, что, если деревянные балки будут заделаны в стены, это будет влиять на их длину и остальные расчеты.

Материал

При проведении подсчета немаловажное значение имеет материал, из которого вы хотите построить дом. Если вы выбрали в качестве основного материала кирпич, доски должны будут быть вмонтированы в гнезда, и приблизительная глубина при этом должна быть от 10 до 15 см. если же речь идет о постройке из дерева, параметры, которые описаны в СНиП, кардинально меняются. В таком случае будет достаточно глубины в 7-9 см. Но учтите, что из-за этого изменится конечная несущая способность.

Если при монтаже будут использованы кронштейны или хомуты, то длина досок и бревен должна соответствовать проему. Если говорить проще, вам нужно рассчитать расстояние от одной стены до другой и тогда вы узнаете, какова несущая способность конструкции в целом.

Важно! При создании ската крыши за стены следует выносить бревна на 0,3-0,5 метра. Это обязательно нужно будет учитывать при подсчете способности конструкции противостояния различным нагрузкам.

Но не все зависит от того, что хочет воплотить архитектор, если дело касается одной лишь математики. Для обрезной доски допустима максимальная длина в 600 см., иначе несущая способность ухудшится и прогиб станет только больше.

Клееный брус

Не редкость, что у домов есть пролеты от 10 до 12 метров. Для осуществления этого используют клееный брус. Он бывает прямоугольным или двутавровым. Еще для надежности можно использовать опоры, и для этого идеально подойдут колоны или дополнительные стены.

Полезный совет! Большинство строителей, если требуется перекрыть длинный пролет, используют фермы.

Методология расчета – общая информация

При расчете деревянной балки на прогиб следует помнить, что для малоэтажного строительства не редкость использование однопролетных балок. Длина всех элементов может быть разной и в большом диапазоне. Чаще всего она зависит от того, какие параметры строения, которое вы хотите возвести.

Обратите внимание, что калькулятор на расчет деревянной балки на прогиб, который есть в конце этой статьи, даст возможность высчитать каждое из значений без временных затрат. Для использования программы введите все известные базовые данные.

В качестве несущих элементов конструкции используют деревянные бруски, у которых высота сечения от 14 до 25 см, а толщина от 5,5 до 15,5 см. Эти параметры используются чаще всего при расчете. Очень часто строители-профессионалы для усиления конструкции используют такое прекрасное дополнение, как перекрестная схема монтажа балок. Такая методика дает самые лучшие результаты при небольших временных и материальных затратах.

Если рассмотреть длину идеального пролета при выведении значения несущей способности деревянных балок, то ограничьте фантазию вашего архитектора параметрами от 2,5 до 4 метров.

Важно! Оптимальным вариантом сечения для деревянной балки считается та площадь, у которой соотношение высоты к ширине как 1,5 к 1.

Расчет прогиба и несущей способности

Схема для рассчетовХочется отметить, что за много лет строительства был выработан следующий алгоритм расчета, который используют чаще всего для расчета несущей способности деревянных балок: М/W<=Rд

В этой формуле значения переменных таковы:

  • Буква М – это изгибающий момент, который измеряется к кг/с*м.
  • W является значением момента сопротивления, и его единица измерения – это см3.

Расчет прогиба – это та часть, указанная выше формулы, и на этот показатель указывает переменная М. для того, чтобы узнать этот параметр, используют такую формулу: М=(ql2)/8

В этой формуле для расчета есть две основные переменные, но они и определяют какова будет несущая способность балки из дерева:

  • Обозначение q указывает на нагрузку, которую доска в состоянии выдержать.
  • А вот буква l является длиной одной из деревянных балок.

Обратите внимание, что расчет прогиба и несущей способности деревянной балки во многом зависит от выбранного материала и метода его обработки.

Насколько важны параметры расчета

Описанные выше параметры очень важны для прочности конструкции в целом. Все дело в том, что одно   й лишь стойкости бруса не хватит для обеспечения надежной и долгой службы, так как со временем прогиб из-за нагрузки может возрасти.

А он, в свою очередь, не просто будет портить красивый внешний вид перекрытия. Если этот параметр будет больше, чем 0,004 об всей длины перекрытия, то вероятность образования аварийного положения возрастает в несколько десятков раз.

Для чего нужен калькулятор

Установленный ниже калькулятор поможет рассчитать прогиб за пару секунд, а также несущую способность балки из дерева и многие другие параметры. С вас лишь требуется ввести данные, и вы мгновенно получите все расчеты по вашему будущему дому.

 

Деревянные балки перекрытия – виды, расчет деревянного перекрытия + пример

Стены и перекрытия – основные элементы любого строительства.

Назначение перекрытия – разделять этажи в доме, а также нести и распределять нагрузку от расположенных вверху составляющих – стен, крыши, коммуникаций, мебели, деталей интерьера.

Можно выделить несколько видов перекрытия: металлическое, железобетонное и деревянное.

 

Более подробно остановимся на деревянных перекрытиях, поскольку именно они получили наибольшее распространение в частном строительстве.

Деревянное балочное перекрытие обладает преимуществами и недостатками

Плюсы:

  • красивый внешний вид;
  • малый вес дерева;
  • ремонтопригодность;
  • высокая скорость монтажа.

Минусы:

  • без специальной защитной пропитки горючи;
  • низкая прочность по сравнению с железобетонными или металлическими балками;
  • подвержены воздействию влаги, грибка и живых организмов;
  • могут деформироваться от перепадов температур.

Требования к перекрытиям из дерева

Материал для деревянных балок перекрытия должен обладать определенными свойствами и соответствовать требованиям:

  • прочность. Материал перекрытия должен выдерживать возможные нагрузки. Следует учитывать воздействие как постоянных нагрузок, так и переменных;
  • жесткость. Означает способность материала сопротивляться изгибу;
  • звуко- и теплоизоляция;
  • пожарная безопасность.

Типы и виды деревянных перекрытий — классификация

1. По назначению

Подвальное и цокольное перекрытие по деревянным балкам

Подвальное и цокольное перекрытие по деревянным балкамОсновное требование к такому перекрытию – высокая прочность. Поскольку в данном случае, балки будут служить основой для перекрытия пола и соответственно, должны выдерживать значительную нагрузку.

Совет. Если под первым этажом будет располагаться гараж или большой подвал лучше делать деревянное перекрытие по металлическим балкам. Поскольку деревянные подвержены гниению и не всегда могут выдержать значительную нагрузку. Или же уменьшить расстояние между балками.

Чердачное перекрытие по деревянным балкам

Чердачное перекрытие по деревянным балкамПринцип конструктивного устройства может быть независимым или являться продолжением крыши, т.е. частью стропильной системы. Первый вариант более рационален, т.к. является ремонтопригодным, плюс, обеспечивает лучшую звукоизоляцию.

Междуэтажное перекрытие по деревянным балкам

Междуэтажное перекрытие по деревянным балкамКонструктивная особенность заключается в эффекте два в одном – балки перекрытия между этажами с одной стороны являются лагами для пола, а с другой, опорами для потолка. Пространство между ними заполняется тепло- и звукоизоляционными материалами, с обязательным использованием пароизоляции. Пирог снизу обшивается гипсокартоном, а сверху застилается половой доской.

2. По виду

Деревянные балки перекрытия также различаются между собой, и каждый вид имеет свои преимущества.

Цельные (цельномассивные) деревянные балки перекрытия

Для их изготовления применяется массив дерева твердых пород хвойных или лиственных деревьев.

Межэтажные перекрытия по деревянным балкам, могут быть выполнены цельными только при незначительной длине пролета (до 5 метров).

Клееные деревянные балки перекрытия

Снимают ограничение по длине, поскольку данная технология изготовления позволяет реализовать балки перекрытия большой длины.

За счет повышенной прочности деревянные клееные балки применяются в тех случаях, когда требуется выдержать повышенную нагрузку на перекрытие.

Клееные деревянные балки перекрытия — схема устройства

Преимущества клееных балок:
  • высокая прочность;
  • возможность перекрывать большие пролеты;
  • легкость монтажа;
  • незначительный вес;
  • длительный срок службы;
  • отсутствие деформации;
  • пожарная безопасность.

Максимальная длина деревянной балки перекрытия такого вида достигает 20 метров погонных.

Поскольку клееные деревянные балки имеют гладкую поверхность, их часто не зашивают снизу, а оставляют открытыми, создавая в комнате стильный дизайн интерьера.

Сечение деревянных балок перекрытия

Как показывает практика, сечение балок деревянного перекрытия оказывает существенное влияние на способность балки выдерживать несущую нагрузку. Поэтому, необходимо предварительно выполнить расчет сечения деревянных балок перекрытия.

Деревянные балки перекрытия прямоугольного или квадратного сечения

В деревянных домах в качестве межэтажных балок в декоративных целях может использоваться бревно.

Деревянные балки перекрытия прямоугольного или квадратного сечения

Деревянные балки перекрытия круглого сечения (или овального)

Как правило используются для устройства чердачных перекрытий. Круглая балка отличаются высокой устойчивостью на изгиб (зависит от диаметра).

Деревянные балки перекрытия круглого сечения (или овального)

Максимальная длина деревянной балки перекрытия из оцилиндрованного бревна составляет 7, 5 м.п.

Деревянные балки перекрытия — размеры

Деревянные двутавровые балки перекрытия

Могут быть изготовлены из массива дерева, или в сочетании ОСБ и фанеры. Активно используются в каркасном строительстве.

Деревянные двутавровые балки перекрытия

Преимущества деревянных двутавровых балок:
  • точные размеры;
  • возможность использования на длинных пролетах;
  • исключена возможность деформирования;
  • малый вес;
  • уменьшение мостиков холода;
  • возможность закрепить коммуникации;
  • возможность монтажа своими руками без привлечения специальной техники;
  • широкая сфера применения.
Недостатки:
  • высокая стоимость;
  • неудобны для утепления плитами.

Правильный подбор сечения деревянной балки должен быть включен в расчетный план, в противном случае, конструкция перекрытия окажется недостаточно или избыточно жесткой (лишняя статья расходов).

Деревянные двутавровые балки перекрытия — виды и типы, таблица

Материал подготовлен для сайта www.moydomik.net

Расчет деревянного перекрытия

Расстояние между деревянными балками перекрытия определяется:

Во-первых, предполагаемыми нагрузками.

Нагрузка, в свою очередь может быть постоянной – вес перекрытия, вес перегородок между комнатами или вес стропильной системы.

А также переменной – она принимается равной 150 кг/м.кв. (Согласно СНиП 2.01.07-85 «Нагрузки и воздействия»). К переменным нагрузкам относят вес мебели, оборудования, находящихся в доме людей.

Совет. Поскольку учесть все возможные нагрузки затруднительно, следует проектировать перекрытие с запасом прочности. Профессионалы рекомендуют добавлять 30-40 %.

Во-вторых, жесткостью или нормативной величиной прогиба.

Для каждого вида материала ГОСТом устанавливаются свои пределы жесткости. Но формула для расчета одинакова – отношение абсолютной величины прогиба к длине балки. Значение жесткости для чердачных перекрытий не должно превышать 1/200, для междуэтажных 1/250.

На величину прогиба оказывает влияние и порода древесины, из которой изготовлена балка.

Расчет перекрытия по деревянным балкам

Предположим, что расстояние между деревянными балками составляет 1 м.п. Общая длина балки 4 м.п. А предполагаемая нагрузка составит 400 кг/м.кв.

Значит, наибольшая величина прогиба будет наблюдаться при нагрузке

Мmax = (q х l в кв.) / 8 = 400х4 в кв./8 = 800 кг•м.кв.

Рассчитаем момент сопротивления древесины на прогиб по формуле:

Wтреб = Мmax / R. Для сосны этот показатель составит 800 / 142,71 = 0,56057 куб. м

R — сопротивление древесины, приведенное в СНиП II-25-80 (СП 64.13330.2011) «Деревянные конструкции» введенные в эксплуатацию в 2011 г.

В таблице приведено сопротивление лиственницы.

Расчет перекрытия по деревянным балкам — таблица сопротивления древесины

Если используется не сосна, тогда значение следует скорректировать на переходящий коэффициент (приведен в СНиП II-25-80 (СП 64.13330.2011)).

Расчет перекрытия по деревянным балкам — переходящий коэффициент

Если учесть предполагаемый срок службы строения, то полученное значение нужно скорректировать и на него.

Расчет перекрытия по деревянным балкам — срок службы дома

Пример расчета балки показал, что сопротивление балки на прогиб может уменьшиться вдвое. Следовательно, нужно изменить ее сечение.

Расчёт деревянных балок перекрытия можно выполнить с применением выше приведенной формулы. Но можно использовать специально разработанный калькулятор расчета деревянных балок перекрытия. Он позволит учесть все моменты, не утруждая себя поиском данных и расчетом.

В-третьих, параметрами балки.

Длина деревянных балок перекрытия цельных может составлять не более 5 метров для междуэтажных перекрытий. Для чердачных перекрытий длина пролета может составлять 6 м.п.

Таблица деревянных балок перекрытия содержит данные для расчета подходящей высоты балок.

Таблица деревянных балок перекрытия для расчета высоты балок

Толщина деревянных балок перекрытия рассчитывается исходя из предпосылки, что толщина балки должно быть не меньше 1/25 ее длины.

Например, балка длиной 5 м.п. должна иметь ширину 20 см. Если выдержать такой размер сложно, можно достичь нужной ширины путем набора более узких балок.

Следует знать:
Если балки сложить рядом они выдержат нагрузку в два раза больше, а если сложить друг на друга — выдержат нагрузку в четыре раза больше.

Используя график, представленный на рисунке можно определить возможные параметры балки и нагрузку, которую она в силах вынести. Учтите, что данные графика пригодны для расчета однопролетной балки. Т.е. для того случая, когда балка лежит на двух опорах. Измеряя один из параметров можно получить желаемый результат. Обычно в качестве изменяемого параметра выступает шаг балок деревянного перекрытия.

Таблица для подбора сечения деревянных балок перекрытия

Итогом наших расчетов станет составление чертежа, который будет служить наглядным пособием при работе.

Чтобы качественно и надежно осуществить своими руками перекрытие по деревянным балкам, чертеж должен содержать все расчетные данные.

Деревянные балки перекрытия – ГОСТы и СНиПы

Государственные стандарты регулируют все аспекты использования деревянных балок перекрытия вне зависимости от их вида или места использования.

Ниже представлена подборка наиболее важных документов по данной тематике.

Деревянные балки перекрытия – ГОСТ — СНиП

Заключение

В данной статье вы ознакомились с факторами, оказывающими влияние на выбор материала для устройства деревянных балок перекрытия. А также научились определять сечение и выполнять расчёт деревянных балок перекрытия.

Виды строительных балок из дерева- плюсы и минусы- Обзор +Видео

4 фото деревянных балокПри разработке проекта по строительству объекта, производятся расчёты нагрузок для применяемых материалов. На основании собранных данных автор даёт разрешение на применение деталей или производит замену на более подходящий вариант. Расчёты должны быть точными с обязательным запасом прочности.

Особо тщательно производятся расчёты прочности для материалов, которые в период эксплуатации теряют свои технические свойства, а процесс этот может ускориться при влиянии на них внешних сил. К таким материалам относятся детали из пиломатериалов.

Расчёт деревянной балки занимает основное место в строительном процессе

Виды строительных балок из дерева

Разделение на виды основано на определении сечения детали:

  1. Цельные пиленые деревянные детали;
  • Круглое бревно, представляют собой участки ствола дерева очищенные от сучьев и коры. Длина от 3 метров до 6 метров. Диаметр допускается от 140 мм и более. Подходят для монтажа несущих конструкций в виде стропил и ферм.
  • Брус с квадратным сечением. Применяются для перекрытий, монтажа ростверка фундамента и устройства мауэрлата кровли. По длине используется не более 6 метров, при этом учитывается опорная часть в 200 мм.

Доски с прямоугольным сечением. По прочности опережает квадратный брус.

  1. Сборные клееные пиломатериалы;
  • Материал для деревянных балокКлееный брус с квадратным сечением. Отличается повышенной прочностью. Изготавливается в фабричных условиях. Выдерживает нагрузки при длине до 12 метров. Производится из высушенного материала посредством склеивания нескольких досок между собой под прессом. При изготовлении удаляются сучки из древесины и ликвидируются другие изъяны, которые ослабляют обычную деталь. При этом сохраняются все основные технические характеристики древесины.
  • Двутавровые деревянные балки. Редко используемый материал по причине дорогой стоимости. Изготавливается из двух прямоугольных брусков склеенных между собой перпендикулярно деревянной перемычкой. Проявляет самые высокие показатели по прочности.

Материал, используемый для изготовления деревянных балок

Основным материалом для бруса применяется древесина хвойных пород;

  • Монтаж деревянных балокдревесина сосны,
  • пихта редко используется как пиломатериал.
  • материал из ели,
  • лиственница,
  • тисовая древесина не уступает по прочности сосне.

При хороших местных условиях по наличию чернолесья, для материала изготовления балок перекрытия применяется породы широколиственных деревьев;

  • древесина дуба,
  • клён,
  • берёза,
  • бук лесной,

Положительные характеристики древесного материала

Лёгкий вес деталей, не требуется привлечения специальной техники. Уменьшается нагрузка общей конструкции здания.

  • По прочности не уступает материалу из металла и бетона.
  • Не нарушает экологическую обстановку.
  • Долгий срок службы.
  • Красиво выглядит.
  • Недорогой материал.
  • Быстро монтируется.

Отрицательные качества деревянного бруса

  • Высокая горючесть, перед применением требуется обработка специальными составами препятствующими возгорание.
  • Непозволительно попадание влаги. В противном положении возможна деформация, возникновение очагов плесени и гниения, приводящие к разрушению.

Со временем изменяются размеры в связи с усыханием материала. Невозможно применение материала изготовленного из свежеспилённого дерева. Неправильная сушка приводит брус к растрескиванию и скручиванию с полной деформацией.

Места применения балок из древесины

  • Перекрытия подвальных помещений и цокольных этажей. В последующем снизу производится подшивка доской и укладка утепляющего материала. Сверху по балке устраиваются полы.
  • Потолочное перекрытие отделяет пространство комнат от чердачного пространства.
  • Из деревянных балок монтируется остов кровли, как основных деталей. Мауэрлат с опорой на него стропильного бруса и дополнительными опорными деталями.

Как рассчитываются основные характеристики деревянной балки

К основным техническим характеристикам пиломатериалов для изготовления балок относятся:

  • Размер сечений деревянных балокРазмер сечения. Данная характеристика равна 5% от необходимой длины балки.
  • Длина балки, измеряется расстоянием равным промежутком между стенами. Не учитывается отрезок бруса заложенный в стену для опоры.
  • Оптимальное расстояние между балками, равно 600 мм или 1200мм. подбирается под размер подшивного материала и плит утеплителя. Такое расстояние обеспечивает наибольшую жёсткость конструкции.
  • Действующая нагрузка на деталь. Данная величина для балки подразделяется на постоянную нагрузку, состоящие из веса детали, подшивного материала, материала для пола и утеплителя. Переменные величины представляют собой вес людей, мебели, оборудования. Основные данные вычисляются по справочным формулам, в которых используются табличные значения согласно СНиП. В них входят данные весовые нагрузки на 1м2, умноженные на коэффициент запаса прочности равный всегда 1,3.

Затем складываются примерный вес 1м2и общий вес постоянной величины соответствующий справочной величины, результатом будет общая нагрузка, действующая на балку и возможны прогиб детали.

Заключение

Самым точным вариантом для расчёта величины прочности необходимой балки для монтажа перекрытия будет обращение к справочным таблицам в СНиП. Они рассчитаны высококвалифицированными специалистами с необходимым запасом прочности. Тем самым снижается риск возникновения ошибки в самостоятельных расчётах.

Расчет деревянной балки перекрытия согласно СП 64.13330.2011

Итак планируется междуэтажное перекрытие по деревянным балкам для дома, имеющего следующий план:

Рисунок 515.1. План помещений второго этажа.

1. Общий Расчет балки перекрытия санузла на прочность

Для того, чтобы рассчитать деревянную балку на прочность согласно требований СП, следует сначала определить множество различных данных на основании общих положений расчета балок.

1.1. Виды и количество опор

Деревянные балки будут опираться на стены. Так как мы не предусматриваем никаких дополнительных мер, позволяющих исключить поворот концов балки на опорах, то опоры балки следует рассматривать, как шарнирные (рисунок 219.2).

Рисунок 219.2.

Примечание: Так как концы балок, опирающиеся на каменные стены, для уменьшения риска гниения балок как правило обрабатывают гидроизоляционными материалами, имеющими относительно малый модуль упругости, при этом глубина заделки концов балки в стену не превышает 15-20 см, то даже если на опорные участки таких балок будет опираться каменная кладка, то это все равно не позволяет рассматривать такое опирание, как жесткое защемление.

1.2. Количество и длина пролетов

Согласно плану, показанному на рисунке 515.1, для перекрытия в санузле (помещение 2-1) длина пролета будет составлять около:

l = 4.18 — 0.4 = 3.78 м

При этом балки будут однопролетными, а значит статически определимыми.

1.3. Система координат

Расчет будем производить используя стандартную систему координат с осями х, у и z. При этом балка рассматривается как стержень, нейтральная ось которого совпадает с осью координат х, а начало координат совпадает с началом балки. Соответственно длина балки измеряется по оси х.

1.4. Действующие нагрузки

Все возможные расчетные плоские нагрузки для такого перекрытия мы уже собрали:

qрп = 212.46 кг/м2

qрв = 195 кг/м2

Примечание: при объемной чугунной ванне, установленной посредине балок перекрытия, расчетное значение временной нагрузки может быть значительно больше.

Однако такие значения нагрузок можно использовать только при расчете монолитного перекрытия. В нашем же случае балки перекрытия представляют собой крайние или промежуточные опоры для многопролетных балок — досок настила и остального пирога перекрытия.

Таким образом для более точного определения нагрузки на наиболее загруженную балку следует точно знать, доски какой длины будут использоваться в качестве настила по балкам. Если такого знания нет, то я рекомендую рассматривать наиболее неблагоприятный вариант, а именно — доски будут перекрывать 2 пролета, т.е. опираться на 3 балки перекрытия.

В этом случае наиболее нагруженной будет балка — промежуточная опора для таких досок — двухпролетных балок, соответственно значения нагрузок для такой балки следует увеличить в 10/8 = 1.25 раза или на 25%, тогда:

qрп = 212.46·1.25 = 265.58 кг/м2

qрв = 195·1.25 = 243.75 кг/м2

Если доски будут перекрывать 3 пролета, то значения нагрузок следует увеличить в 1.1 раза (253.4.4). При 4 пролетах — в 8/7 = 1.15 раза (262.7.10) и так далее, тем не менее остановимся на первом варианте, так оно надежнее.

Так как на рассчитываемое перекрытие действует только одна кратковременная нагрузка (особые нагрузки типа взрывной волны или землетрясения мы для нашего перекрытия не предусматриваем), то при рассмотрении основного сочетания нагрузок используется полное значение кратковременной нагрузки согласно СП 20.13330.2011 «Нагрузки и воздействия» п.1.12.3, тогда:

qр = 265.58 + 243.75 = 509.33 кг/м2

Так как балки рассчитываются не на плоскую, а на линейную нагрузку, то при шаге балок 0.6 м расчетная линейная нагрузка на балку составит:

qрл = 509.33·0.6 = 305.6 кг/м

1.5. Определение опорных реакций и максимального изгибающего момента

Так как загружение балки равномерно распределенной нагрузкой — достаточно распространенный частный случай, то для определения опорных реакций можно воспользоваться готовыми формулами:

А = В = ql/2 = 305.6·3.78/2 = 577.6 кг

Мmax = ql2/8 = 305.6·3.782/8 = 545.82 кгм или 54582 кгсм

1.6. Построение эпюр поперечных сил и изгибающих моментов

В нашем частном случае, когда нагрузка является равномерно распределенной, можно опять же воспользоваться готовыми эпюрами, благо их для такого случая построено уже множество:

Рисунок 149.7.2. Эпюры поперечных сил и моментов, действующих в поперечных сечениях 

Для большей наглядности можно нанести полученные значения поперечных сил (опорные реакции — это и есть значения поперечных сил в начале и в конце балки) и максимального изгибающего момента на эпюры.

Примечание: В данном случае эпюра моментов помечена знаком минус, просто потому, что откладывается снизу от оси координат х. А вообще знак для моментов принципиального значения не имеет, так как при действии момента всегда есть и растянутая и сжатая зона поперечного сечения. Таким образом наиболее важно понимать, где при действии момента будет растянутая, а где сжатая зона сечения. Впрочем для деревянных балок это большого значения не имеет.

1.7. Определение требуемого момента сопротивления

Согласно СП 64.13330.2011 «Деревянные конструкции» п.6.9 расчет изгибаемых элементов, обеспеченных от потери устойчивости плоской формы деформирования, следует производить, исходя из следующего условия:

M/Wрасч ≤ Rи (или Rид.ш.) (533.1)

где М — расчетное значение изгибающего момента. В нашем случае (для балки постоянного сечения при действии равномерно распределенной нагрузки) достаточно проверить балку на действие максимального изгибающего момента. В общем случае при достаточно сложной комбинации различных нагрузок или для балок переменного сечения могут потребоваться проверки на прочность в нескольких сечениях. Для определения момента в этих сечениях и используется эпюра моментов.

Rи — расчетное сопротивление древесины изгибу. Определение расчетного сопротивления древесины в зависимости от различных факторов — отдельная большая тема. В данном случае ограничимся тем, что при использовании балок из цельной древесины — сосны 2 сорта расчетное сопротивление изгибу для балок перекрытия санузла может составлять Rи = 113.3 кгс/см2.

Rид.ш. — расчетное сопротивление для элементов из однонаправленного шпона, но так как в данном случае мы рассматриваем балку из цельной древесины, то возможные значения клееных элементов нас не интересуют

Wрасч— расчетный момент сопротивления рассматриваемого поперечного сечения. Для элементов из цельной древесины Wрасч = Wнт, где Wнт — момент сопротивления рассматриваемого сечения с учетом возможных ослаблений — момент сопротивления нетто.

Так как для рассчитываемых балок не предусматривается никаких ослаблений в зоне максимального загружения (гвозди крепления досок перекрытия не в счет), то требуемый по расчету момент сопротивления поперечного сечения балки можно определить, преобразовав соответствующим образом формулу (533.1):

Wрасч ≥ М/Rи = 54582/113.3 = 481.73 см3

1.8. Определение геометрических параметров сечения

Так как мы предварительно приняли прямоугольное поперечное сечение балок, имеющее размеры b — ширину и h — высоту, то задавшись значением одного из этих параметров, мы можем определить значение другого.

Если принять ширину балок 10 см, исходя из сортамента производимых в ближайших окрестностях лесоматериалов, то требуемую высоту поперечного сечения можно определить по формуле:

(147.4)

hтр = √6·481.73/10 = 17 см.

Исходя из все того же сортамента, высоту балок следует принять не менее 20 см. Также можно уменьшить шаг балок, например при шаге балок 0.45 м значение расчетного момента сопротивления составит не менее

Wрасч = 0.5·481.73/0.6 = 361.3 см3

и тогда минимально допустимая высота сечения

hтр = √6·361.3/10 = 14.72 см.

А значит можно принять высоту балок равной 15 см. Впрочем, возможны и другие варианты подхода, например, более точно учесть количество пролетов, перекрываемых досками, это позволит уменьшить значение нагрузки на 10-15%.

2. Определение прогиба

Так как для однопролетных балок с шарнирными опорами значение прогиба может стать определяющим, то я рекомендую определять прогиб сразу после определения параметров сечения.

При действии равномерно распределенной нагрузки на однопролетную балку с шарнирными опорами значение прогиба без учета влияния поперечных сил можно определить по следующей формуле:

f0 = 5ql4/(384EI)

где q — нормативное значение нагрузки.

Значения плоских нормативных нагрузок, необходимые для определения прогиба, мы уже определили при сборе нагрузок. Они составляют:

qнп = 171.6 кг/м2

qнв = 150 кг/м2

Соответственно с учетом шага балок 0.6 м и перераспределения опорных нагрузок линейная нормативная нагрузка составляет:

qнл = 0.6·1.25(171.6 + 150) = 241.2 кг/м (2.412 кг/см)

Е = 105 кгс/см2, модуль упругости древесины, принимаемый по СП 64.13330.2011 «Деревянные конструкции».

I = bh3/12 = 10·203/12 = 6666.67 см4, — момент инерции рассматриваемого прямоугольного сечения балки.

Тогда

f0 = 5·2.412·3784/(384·105·6666.67) = 0.962 см

При действии равномерно распределенной нагрузки на балку значение коэффициента с, учитывающего влияние поперечных сил на значение прогиба, составит согласно таблицы Е.3: 

с = 15.4 + 3.8β (533.2)

Так как высота балки у нас постоянная величина, то β =1 = k и соответственно

с = 15.4 + 3.8 = 19.2

 Тогда при высоте балки h = 0.2 м и пролете l = 3.78 м (h/l = 0.053) значение прогиба с учетом поперечных сил составит:

f = fo[1 + c(h/l)2]/k = 0.962[1 + 19.2·0.0532]/1 = 1.01 см

Предельно допустимое значение прогиба деревянных балок междуэтажного перекрытия согласно таблицы 19 СП 64.13330.2011 «Деревянные конструкции» составляет fд = l/250 = 387/250 = 1.55 см.

Необходимые требования по максимально допустимому прогибу нами соблюдены, мы можем продолжать расчет.

1.9. Проверка по касательным напряжениям (прочность по скалыванию)

При изгибе в сечениях, поперечных и параллельных нейтральной оси балки, будут действовать касательные напряжения. В деревянных балках это может привести к скалыванию древесины вдоль волокон. поэтому касательные напряжения т не должны превышать расчетного сопротивления Rск скалыванию:

т = QS’бр/bрасIбр ≤ Rск (Rскд.ш.) (533.3)

где Q — значение поперечной силы в рассматриваемом поперечном сечении, определяемое по эпюре моментов. В нашем случае максимальные касательные напряжения будут действовать на опорах балки, Q = 557.6 кг

S’бр — статический момент брутто (т.е. без учета возможных ослаблений сечения) сдвигаемой (скалываемой) части сечения. Статический момент определяется относительно нейтральной оси балки.

bрас — расчетная ширина сечения рассматриваемого элемента конструкции. В данном случае у нас ширина балки равна bрас = 10 см.

Rск — расчетное сопротивление древесины скалыванию. Как и при определении расчетного сопротивления изгибу значение, определенное по таблице 3, следует дополнительно умножить на ряд коэффициентов, учитывающих различные факторы. Впрочем факторы у нас не изменились и потому согласно п.5.а) и определенным ранее коэффициентам расчетное сопротивление скалыванию составит:

Rск = 1.6·0.9·0.95 = 1.368 МПа (13.95 кгс/см2)

Iбр — момент инерции брутто, т.е. опять же определяемый без учета возможных ослаблений сечения. В данном случае момент инерции брутто совпадает с определенным ранее моментом инерции.

Впрочем, для балок прямоугольного сечения нет большой необходимости при подобных расчетах определять как статический момент полусечения, так и момент инерции. По той причине, что максимальные касательные напряжения действуют посредине высоты балки и составляют:

т = 1.5Q/F (270.3)

Тогда

т = 1.5·557.6/(10·20) = 4.182 кг/см2 < 13.95 кг/см2

Требование по прочности по скалыванию соблюдается, причем с 3-х кратным запасом.

На этом расчет деревянной балки постоянного сплошного сечения, устойчивость которой из плоскости изгиба обеспечена другими элементами конструкции, можно считать законченным. Во всяком случае никаких дополнительных требований Сводом Правил в таких случаях не предъявляется.

Тем не менее я рекомендую дополнительно проверить опорные участки балки

1.10. Проверка на прочность опорных участков балки

Любая балка в отличие от показанной на рисунке 219.2 модели имеет опорные участки. На этих опорных участках действуют нормальные напряжения в сечениях, параллельных нейтральной оси балки.

Распределение нормальных напряжений на этом участке зависит от множества различных факторов, в частности от угла поворота поперечного сечения балки на опоре, длины опорных участков и т.п.

Если для упрощения расчетов принять линейное изменение нормальных напряжений от максимума до 0, то примерное значение максимальных нормальных напряжений на опорных участках можно определить по следующей формуле:

σу = 2Q/(blоп) ≤ Rcм90 (533.4)

где Q — значение поперечной силы согласно эпюры «Q», как и прежде оно составляет Q = 557.6 кг;

b — ширина балки b = 10 см;

lоп — длина опорного участка, из конструктивных соображений примем lоп = 10 см;

2 — коэффициент учитывающий неравномерность распределения напряжений на опорном участке;

Rcм90 — расчетное сопротивление смятию поперек волокон. Согласно п.4.а) таблицы 3 и с учетом поправочных коэффициентов расчетное сопротивление смятию поперек волокон составит:

Rсм90 = 4·0.9·0.95 = 3.42 МПа (34.8 кгс/см2)

Тогда

2·557.6/(10·10) = 11.15 кг/см2 < 34.8 кг/см2

Как видим условие по прочности на опорных участках также соблюдается и снова с хорошим 3-х кратным запасом.

И теперь расчет балки перекрытия санузла можно действительно считать законченным.

Дополнительные проверки на прочность в местах действия сосредоточенных нагрузок здесь не требуются как минимум потому, что при принятой расчетной схеме сосредоточенные нагрузки отсутствуют. Да и рассматривать плоское напряженное состояние балки для определения максимальных напряжений при постоянном сплошном прямоугольном сечении балки и принятой схеме нагрузок и опор на мой взгляд также не требуется.

Отправить ответ

avatar
  Подписаться  
Уведомление о