Расчет фундамента под колонну – Пособие к СНиП 2.02.01-83 Пособие к СНиП 2.03.01-84 Пособие по проектированию фундаментов на естественном основании под колонны зданий и сооружений

Содержание

Расчет столбчатого фундамента под колонну

Расчёт фундамента под колонну

3.1. Исходные данные

Рассчитать и законструировать столбчатый сборный фундамент под колонну среднего ряда. Бетон класса С 20 /25, рабочая арматура класса S400.

Таблица 8. Исходные данные

3.2. Расчет фундамента под колонну

3.2.1. Определяем глубину заложения фундамента из условия длины колонны:

Определяем глубину заложения фундамента из условий заложения грунта:

Рис. 15. Определение глубины заложения фундамента

По схематической карте нормативной глубины промерзания грунтов для г. Гродно определяем глубину промерзания – 1,0 м.

Dф2 =150+1000+100=1250 мм 16 /20 при сжатии:

– Расчетное сопротивление бетона класса С 16 /20 при растяжении:

– Расчетное сопротивление арматуры класса S500 fyd = 450 МПа.

Определяем предварительные размеры подошвы фундамента:

Тогда размер стороны квадратной подошвы фундамента:

Вносим поправку на ширину подошвы и на глубину заложения фундамента.

Тогда размер стороны квадратной подошвы фундамента:

b = √A = √2,87 = 1,69 м.

Окончательно принимаем: b = 1,8 м (кратно 0,3 м).

Определяем среднее давление под подошвой фундамента от действующей нагрузки:

Определяем расчётное сопротивление грунта:

k – коэффициент, принимаемый равным: k = 1, если прочностные характеристики грунта (φ и с) определены непосредственными испытаниями, и k = 1.1, если они приняты по таблицам, k = 1,1,

kz = 1 при b ’ II = γII = 18 кН/м 3 – удельный вес грунта соответственно ниже и выше подошвы фундамента.

R = 1,3 ⋅ 1,2/ 1,1 [1,81⋅1⋅1,8⋅18+8,24⋅1,4⋅18+9,97⋅4]= 434,75 МПа> 285,94 кПа

Следовательно, расчёт по II группе предельных состояний можно не производить.

3.2.3. Расчёт тела фундамента

Определяем реактивное давление грунта:

Определяем размеры фундамента.

Рабочая высота фундамента из условия продавливания колонны через тело фундамента:

+ 0,5⋅ √( 1128,23 / 1,0⋅1,47⋅10 3 + 348,22) = 267 мм

c = a + 0.5⋅∅ , где: a = 45 мм – толщина защитного слоя бетона для арматуры (для сборных фундаментов).

с = 50 мм – расстояние от центра тяжести арматуры до подошвы фундамента.

Полная высота фундамента:

Для обеспечения жесткого защемления колонны в фундаменте и достаточной анкеровки ее рабочей арматуры высота фундамента принимается:

∅ = 18 мм – диаметр рабочей арматуры колонны,

fbd = 2,0 МПа – предельное напряженное сцепление для бетона класса С 20 /25,

Принимаем окончательно высоту фундамента:

Hf = max(Hf1, Hf2

) = 1013 мм. Принимаем Hf = 1050 мм – кратно 150 мм.

Рабочая высота фундамента:

d = H − c = 1050−50 =1000 мм.

Принимаем первую ступень высотой: h1 = 300 мм.

Принимаем остальные размеры фундамента.

Рис.16. Определение размеров фундамента

Высота верхней ступени фундамента:

Глубина стакана hcf = 1,5 ⋅ hc + 50 = 1,5 ⋅ 300 + 50 = 500 мм, принимаем hcf = 650 мм. Так как h2 = 750 мм bc = 225 мм.

Следовательно, требуется армирование стенки стакана.

Т. к. bc+75=225+75=300 мм = 348,22⋅0,1/1,0⋅1,27⋅10 3 = 27 мм.,

что не превышает принятую d1 = 250 мм.

3.2.4. Расчет армирования подошвы фундамента

Площадь сечения рабочей арматуры сетки, укладываемой по подошве фундамента, определяется из расчета на изгиб консольного выступа ступеней, заделанных в массив фундамента, в сечениях по грани колонны и по граням ступеней.

Значения изгибающих моментов в этих сечениях:

Требуемое сечение арматуры:

As1 = MI-I / 0,9⋅ d ⋅ α ⋅ fyd = 176,29⋅10 6 / 0,9⋅1000⋅1,0⋅365 = 435,28 мм 2 ,

As2 = MII-II / 0,9⋅ d1 ⋅ α ⋅ fyd = 63,46⋅10 6 / 0,9⋅250⋅1,0⋅365 = 626,77 мм 2 ,

Арматуру подбираем по максимальной площади:

Принимаем шаг стержней S = 200 мм.

Количество стержней в сетке в одном направлении:

n = b / S +1 = 1800 / 200 + 1 = 10 шт. Принимаем 10 шт.

Требуемая площадь сечения одного стержня:

Принимаем один стержень ∅8 S400, A

st = 50,3 мм 2 .

Такое же количество стержней укладывается в сетке в противоположном направлении.

3.2.5. Расчет монтажных петель

Вес фундамента определяем по его объему и объемному весу бетона, из которого он изготовлен.

Объем бетона на 1 стакан фундамента:

Вес стакана с учетом коэффициента динамичности kд = 1,4:

Усилие, приходящиеся на одну монтажную петлю:

N = 43942,8 / 2 = 21971,4 Н.

Определяем площадь поперечного сечения одной петли из арматуры класса S240, fyd = 218 МПа.

Принимаем петлю 1∅14 S240 As1 = 113,1 мм 2 .

Литература

1. СНБ 5.03.01–02. «Конструкции бетонные и железобетонные». – Мн.: Стройтехнорм, 2002 г. – 274с.

2. Нагрузки и воздействия: СНиП 2.01.07-85.–М.:1987.–36c.

3. Байков В.Н., Сигалов Э.Е. Железобетонные конструкции:

Общий курс.– М.: Стройиздат , 1991.–767с.

4. Железобетонные конструкции. Основы теории расчета и конструирования // Учебное пособие для студентов строительной специальности. Под редакцией профессора Т.М. Петцольда и профессора В.В. Тура. – Брест, БГТУ, 2003.– 380с.

5. Строительные конструкции. Методические указания по выполнению курсового проекта специальность 2-70 02 01 «Промышленные и гражданские здания». Брест 2007 г.

Расчёт фундамента под колонну
Расчёт фундамента под колонну 3.1. Исходные данные Рассчитать и законструировать столбчатый сборный фундамент под колонну среднего ряда. Бетон класса С 20 / 25 , рабочая арматура класса

Источник: mydocx.ru

Расчет фундамента под колонну,

1. Данные для проектирования фундамента

.

Усилия колонны у заделки в фундаменте:

Ввиду относительно малых значений эксцентриситета, фундамент колонны рассчитываем как центрально загруженный.

Усредненное значение коэффициента надежности по нагрузке ,

Нормативное значение нагрузки

Расчётное сопротивление грунта

Бетон тяжелый класса ,

Арматура класса A-II

Вес единицы объема бетона фундамента и грунта на его срезах

Высоту фундамента предварительно принимаем равной .

2. Определение размера сторон подошвы фундамента.

Площадь подошвы фундамента определяем предварительно без поправок на её ширину и заложение

Размер стороны квадратной подошвы

Принимаем (кратно 0,3м)

Давление на грунт от расчетной нагрузки

Рабочая высота фундамента из условий продавливания:

Полную высоту фундамента устанавливаем из условий:

2) заделки колонны в фундаменте:

3) анкеровки растянутой арматуры колонны Æ32 А III (d = 3,2 см)

Принимаем окончательно фундамент высотой (кратно 30 см), трёхступенчатый (2 верхних ступени по 30 см нижняя ступень 60 см). Глубина стакана толщина дна фундамента (120 – 85) = 35см ³ 20см. Для неармированного подколонника толщина стенки

Принимаем по конструктивным требованиям, с учётом призмы продавливания t = 22,5см.

Проверим, отвечает ли рабочая высота нижней ступени фундамента

условию прочности по поперечной силе без поперечного армирования в наклонном сечении, находящемся в сечении III–III. Для единицы длины этого сечения b = 100:

– условие прочности удовлетворяется.

3. Определение площади рабочей арматуры фундамента.

Расчетные изгибающие моменты колонны в сечениях I-I и II-II:

Площадь сечения арматуры:

Т.к. стороны фундамента больше 3 м, половину стержней принимаем длиной , где – размер длинных стержней.

В соответствии с конструктивными требованиями диаметр стержней принимаем не менее 12мм, шаг стержней S не менее 100мм и не более 200мм

Для удобства армирования принимаем две сетки с общей площадью стержней:

Расчет фундамента под колонну
Расчет фундамента под колонну, 1. Данные для проектирования фундамента . Усилия колонны у заделки в фундаменте: Ввиду относительно малых значений эксцентриситета, фундамент колонны

Источник: studopedia.su

Расчет фундамента под колонну

Сбор нагрузок под колонну

Делаем сбор нагрузок на фундамент под колонну в табличной форме.

Коэффициент надежности по нагрузке,

на единицу площади,

от грузовой площади, кН

От бетонного пола по перекрытию

Кратковременная на 1 м2 перекрытия (табл.3 /7/)

Расчет отдельно стоящего фундамента

Вертикальная нагрузка на уровне спланированной отметки земли N=251,58 кН, Nn=211,37 кН,

Условное расчетное сопротивление основания, сложенного гравийно-галечниковым грунтом, определяем по табл. 45/16/ кПа.

Вес единицы объема фундамента на его обрезах гmt=18 кН/м 3 .

Бетон тяжелый класса В 20, Rbt=0,9МП, Rb=11,5 МПа, гb2=1,

Арматура класса А-II, Rs=280 МПа.

Рис. 3.3. Заложение отдельно стоящего фундамента

Грунт под подошвой фундамента – песчано-гравийная смесь. Т.о., в соответствии с табл.2. СНиП 2.02.01-83, глубина заложения фундамента не зависит от .

Учитывая наличие подвала, принимаем глубину заложения фундамента, равную 3,3м.

Предварительные размеры фундамента

Предварительная площадь фундамента:

– суммарная расчетная нагрузка по обрезу фундамента, кН,

– расчетное сопротивление грунта основания, кПа,

– средний удельный вес грунта и материала фундамента, кН/м 3 ,

– глубина заложения фундамента, м.

Предварительная ширина фундамента:

где и -коэффициенты условий работы.

k-коэффициент, принимаемый равным 1,

-коэффициенты, принимаемые по табл. 4,

-коэффициент, принимаемый равным 1, т.к. b 10 м,

b-ширина подошвы фундамента, м,

-осредненное расчетное значение удельного веса грунтов, залегающих ниже подошвы фундамента кН/м 3 (тс/м 3 ),

-то же, залегающих выше подошвы,

-расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента, кПа (тс/м 2 ),

d1-глубина заложения фундаментов бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала

Размеры фундамента при R=608,02 кПа

Принимаем , исходя из конструктивных соображений.

Рис. 3.4. Конструирование отдельно стоящего фундамента

Вес грунта на обрезах фундамента

Среднее напряжение по подошве

Условия выполняются, размеры фундамента принимаются.

Расчет свайного фундамента

– глубина заложения ростверка

– принимаем глубину заложения 3,4 м, исходя из конструктивных соображений.

– за несущий слой принимаем песчано-гравийную смесь.

– длина сваи 3 м, сечение 30Ч30

Рис.3.5. Заложение свайного фундамента

Определение несущей способности сваи:

где – коэффициент условий работы сваи в грунте, принимаемый = 1,

R= 9295 кПа- расчетное сопротивление грунта под нижним концом сваи (Н =6,1 м), принимаемое по табл.1 СНиП 2.02.03-85,

при Н=5м, R=8800 кПа,

при Н=7м, R=9700 кПа,

– площадь опирания сваи на грунт, м 2 ,

– наружный периметр поперечного сечения сваи, м,

– расчетные сопротивления слоев грунта основания по боковой поверхности сваи, принимаемые по табл.2 СНиП 2.02.03-85,

hi – толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м,

и – коэффициенты условий работы.

Допустимая нагрузка на сваю

где =1,4 – коэффициент надежности.

Несущая способность сваи по материалу:

Расчет продолжаем по наименьшей несущей способности

Среднее условное давление под подошвой:

Вес ростверка и грунта:

Требуемое количество свай:

Рис. 3.6. Конструирование ростверка

Вес грунта на обрезах

Нагрузка на сваю в ростверке

Следовательно, использование свайного фундамента является нецелесообразным, т. к даже при использовании минимального количества свай возникает значительное недонапряжение.

Исходя из этого, принимаем отдельно стоящий монолитный фундамент под колонну.

Расчет фундаментов под колонну
Расчет фундамента под колонну Сбор нагрузок под колонну Делаем сбор нагрузок на фундамент под колонну в табличной форме. Коэффициент надежности по нагрузке, на единицу площади, от

Источник: vuzlit.ru

Расчет столбчатого фундамента под колонну

Расчет фундамента выполняем под колонну среднего ряда, которая работает как центрально сжатый элемент. Фундамент под колонну среднего ряда считается как центрально-загруженный.

7.1.Расчет подошвы столбчатого фундамента.

Усилия от нормативной нагрузки определяются приблизительно, путём деления расчётных нагрузок на средний коэффициент надежности по нагрузке:

γн=1.15 – средний коэффициент надежности по нагрузке,

7.2.Глубина заложения фундамента

Глубина заложения фундамента d определяется с учетом:

– конструктивных особенностей сооружения,

– глубины заложения соседних фундаментов и прокладки коммуникаций,

– рельефа, характера напластования и свойств грунтов,

– глубины сезонного промерзания грунтов.

7.3.Определение глубины сезонного промерзания:

dfn=1,2 – нормативная глубина сезонного промерзания, м, кn=0,6 – коэффициент характеризующий параметры эксплуатации здания.

Глубина фундамента должна быть больше 0.9м. Принимаю глубину заложения фундамента 1,5 м. Защитный слой бетона принимаю равным a=3,5 см, так как будет производиться подготовка по грунту, толщиной слоя 10 см

7.4.Определение ширины подошвы фундамента.

расчётное сопротивление грунта (принимается по СНиП МПа – пески пылеватые маловлажные плотные).

глубина заложения фундамента. м.

удельный вес грунта на обрезок фундамента. кН/м 3 .

7.5.Длина стороны фундамента

При центрально-загруженном фундаменте принимаем квадратную форму основания фундамента. Длина стороны фундамента:

Принимаем фундамент: 1,6´1,6 м и Аф = 2,6 м 2

7.6.Давление на подошву грунта

Принимаем бетон В15 с прочностью на одноосное сжатие Rb = 8.7 МПа, нормативным сопротивление бетона при растяжении Rbt = 0.75 МПа и рабочую арматуру А-II с расчетным сопротивлением растяжению RS = 280 МПа.

7.7.Полезная минимальная высота фундамента определяется из условия продавливания его колонной при действии расчётной нагрузки:

7.8.Высота фундамента с учетом конструктивных требований

Конструктивно принимаю высоту ступенькиh1 = 20 см, h2 = 20 см

Конструктивно принимаю высоту ступенькиh1 = 20 см, h2 = 20 см.

Расчет столбчатого фундамента под колонну
Расчет столбчатого фундамента под колонну Расчет фундамента выполняем под колонну среднего ряда, которая работает как центрально сжатый элемент. Фундамент под колонну среднего ряда считается как

Источник: helpiks.org

6.1.5 Пример расчета фундаментов на естественном основании под колонны зданий и сооружений

Пример 6.1. Определить размеры и площадь сеченая арматуры внецентренно нагруженного фундамента со ступенчатой плитной частью и стаканным сопряжением с колонной размером сечения lс × bс = 400 × 400 мм. Глубина заделки колонны 0,75 м. Отметки: низа колонны — 0,90 м, обреза фундамента — 0,15 м, низа подошвы — 2,65 м. Размер подошвы 3,3 × 2,7 м.

Расчетные нагрузки на уровне обреза фундамента приведены в табл. 6.1.

ТАБЛИЦА 6.1. К ПРИМЕРУ 6.1

Примечание. Индексы обозначают, х — направление вдоль большого размера подошвы, у — то же, вдоль меньшего.

Материалы: сталь класса А-III, Rs = 360 МПа ( ø 6-8 мм), Rs = 375 МПа ( ø 10 мм), бетон тяжелый класса В10 (В15).

Расчетные сопротивления приняты со следующими коэффициентами условий работы: γb1 = 1, γb2 = 0,9, γb4 = 0,85.

Решение. 1. Назначение предварительных геометрических размеров фундамента (рис. 6.12). Определим необходимую толщину стенок стакана по сочетанию 3:

е = Mx/ N = 336/2100 = 0,16 м, т.е. е 0,2 lс = 0,2 · 0,4 = 0,08 м, но не менее 0,15 м. Тогда размеры подколонника luc = buc = 2 · 0,15 + 2 ·0,075 + 0,4 = 0,85 м. Принимаем с учетом рекомендуемого модуля 0,3 м.

Высоты ступеней плитной части hi = 0,3 м. Площадь подошвы фундамента A = 3,3 · 2,7 = 8,92 м 2 . Момент сопротивления в направлении большего размера

Wx = l 2 b /6 = 3,3 2 · 2,7/6 = 4,9 м 2 .

Рабочая высота плитной части h = 0,3 · 2 – 0,05 = 0,55 м. Глубина стакана hg = 0,75 + 0,05 = 0,8 м.

2. Расчет фундамента на продавливание. Расстояние от верха плитной части до низа колонны 1,05 м, в то время как huc = (luc – 1c) /2 = 0,25 м, следовательно, проверка на продавливание плитной части производится от низа подколонника.

Максимальное краевое давление на грунт (6.9):

pmax = 2100/8,92 + (336 + 72 · 2,4)/4,9 = 0,339 МПа.

Принимаем наибольшее значение pmax = 0,339 МПа. Продавливающая сила F = Аpmax .

Тогда F = 1,64 · 0,339 = 556 кН.

Задаемся классом бетона В10 с Rbt = 0,57 МПа. С учетом γb2 = 0,9 и γb4 = 0,85 Rbt = 0,57 · 0,9 · 0,85 = 0,436 МПа.

kRbtbph = 1 · 0,436 · 1,45 · 0,55 = 305 2 = 0,5 · 2,7(3,3 – 0,9 – 2 · 0,85) – 0,25[2,7 – 0,9 – 2(0,85 – 0,3)] 2 = 0,85 м 2 ,

Несущая способность фундаментов по формуле (6.26)

F = 0,436 [(0,85 – 0,3)1,45 + 0,3 · 0,9] = 465 кН > 288 кН.

Принятый фундамент удовлетворяет условию прочности на продавливание

Рассмотрим дополнительно вариант при двухступенчатом фундаменте с высотой верхней ступени 0,45 м. Тогда (при h = 0,7 м):

A = 0,5 · 2,7(3,3 – 0,9 – 2 · 0,7) – 0,25(2,7 – 0,9 – 2 · 0,7)2 = 1,31 м 2 ,

F´ = 1,31 · 0,339 = 444,1 кН,

Несущая способность фундамента по формуле (6.1)

F = 1 · 0,436 · 1,6 · 0,7 = 488,3 кН > 444 кН,

т.е. и такой фундамент удовлетворяет прочности на продавливание.

Покажем, однако, что последний вариант менее экономичен. Действительно, объем плитной части высотой 0,9 м при трехступенчатом фундаменте

V3 = 3,3 · 2,7 · 0,3 + 2,4 · 1,8 · 0,3 + 1,5 · 0,9 · 0,3 = 4,37 м 3 , а при двухступенчатом фундаменте с учетом дополнительного объема подколонника на высоте 0,9 – 0,75 = 0,15 м

V2 = 3,3 · 2,7 · 0,3 + 2,4 · 1,8 · 0,45 + 0,9 · 0,9 · 0,15 = 4,74 м 3 > 4,37 м 3 .

Итак, принимаем трехступенчатый фундамент с высотой плитной части 0,9 м.

Проверим прочность нижней ступени при заданном ее выносе 450 мм и h01 = 0,25 м:

A = 0,5 · 2,7(3,3 – 2,4 – 2 · 0,25) – 0,25(2,7 – 1,8 – 2 · 0,25) 2 = 0,5 м 2 ,

P = 0,5 · 0,339 = 169 кН:

Несущая способность ступени F = 1 · 0,436 · 2,05 · 0,25 = 223 кН > 169,5 кН.

Размеры лежащих выше ступеней назначаются пересечением линии AB с линиями, ограничивающими высоты ступеней (рис. 6.13).

Определение площади сечений арматуры плитной части фундамента проведем на примере нижней арматуры (направленной вдоль большей стороны подошвы фундамента) класса А-II.

Расчетные усилия на уровне подошвы принимаем по сочетанию 3 без учета веса фундамента:

N = 2100 кН, M = 336 + 72 · 2,4 = 509 кН·м, еx = 509/2100 = 0,242 м.

Определим давление на грунт в расчетных сечениях (см. рис. 8.12)

Pmax = N/ A + M/ W = 2100/8,92 + 509/4,9 = 370 кН/м 2 ,

pII = 236 + 0,45 · 135 = 297 кН/м 2 .

pIII = 236 + 0,28 · 135 = 274 кН/м 2 .

Принимаем арматуру класса А-II с Rs = 285 МПа:

Сорочан Е.А. Основания, фундаменты и подземные сооружения

Расчет фундамента под колонну
6.1.5 Пример расчета фундаментов на естественном основании под колонны зданий и сооружений

Источник: xn--h3aleim.xn--p1ai

Расчет фундамента под сборную колонну

Проектируем под сборную колонну монолитный фундамент стаканного типа из бетона класса В15 с Rb = 0,9 · 8,5= 7 65 МПа;

Rbt = 0,9 · 0,75 = 0,675 МПа.

,

поэтому (см. п. 3.3 [3] и расчет колонны).

Рабочая арматура класса A400 с Rs = 355 МПа в виде сварной сетки.

Расчетная нагрузка на фундамент при расчете по первой группе предельных состояний с учетом коэффициента надежности по ответственности γn= 0,95 (см. Прил. 7* [18]).

2174,5 КН, (см. Расчет колонны).

При расчете по второй группе предельных состояний

NII= NI : 1,17 = 2174,5 : 1,17 = 1859 кН, где f = 1,17 – усредненный коэффициент надежности по нагрузке.

Необходимая площадь подошвы фундамента под колонну при расчетном сопротивлении грунта в основании (по заданию) R = 0,25 МПа, отметке подошвы фундамента Н = 1,5 м и усредненной плотности массы фундамента и грунта на его обрезах ср= 20 кН/м3

м2.

Размеры сторон квадратного в плане фундамента А = B = м, принимаем кратно 0,3 м, т. е. А =B = 3 м.

Реактивное давление грунта на подошву фундамента от расчетных нагрузок, если принять распределение его по подошве равномерным, будет

кН/м2 < R = 250 кН/м2.

Расчетная высота сечения фундамента из условия обеспечения его прочности против продавливания колонной с размерами 4040 см определяется из формулы (3.177) п. 3.84 [3]:

где u – периметр контура расчетного поперечного сечения на расстоянии 0,5h0 от границы площадки опирания сосредоточенной силы F (колонны).

м.

Полная высота фундамента стаканного типа с толщиной защитного слоя бетона αз = 40 мм при наличии бетонной подготовки в основании (см. табл. 5.1 [3]) и предполагаемом диаметре стержней арматуры d = 20 мм

мм.

Необходимая высота фундамента из условия обеспечения анкеровки продольной арматуры колонны в стакане фундамента при диаметре стержней 20 мм

мм = 20  18 + 250 = 610 мм.

Необходимая высота фундамента из условия обеспечения заделки колонны в стакане фундамента

мм = 400 + 250 = 650 мм.

Принимаем двухступенчатый фундамент hф = 800 мм с высотой ступеней по 400 мм. Расчетная высота фундамента h01 = hф – αз

– 1,5d = 800 – 40 1,5 · 20 = 730 мм = 0,73 м, расчетная высота нижней ступени h02 = hн – αз1,5d = 400 40 1,5 · 20 = 330 мм = 0,33 м (рис. 33).

Рис. 33.

Проверка прочности нижней ступени против продавливания

Продавливающая сила принимается за вычетом нагрузок, приложенных к противоположной грани плиты в пределах площади с размерами, превышающими размеры площадки опирания на h02 во всех направлениях (см. п. 3.84 и черт. 3.47 [3]).

кН.

Периметр контура расчетного поперечного сечения на расстоянии 0,5h02 от границы площадки опирания верхней ступени фундамента.

м.

ПрикН >Fн = 1147,6 кН

прочность нижней ступени против продавливания обеспечена.

Расчет плиты фундамента на изгиб

Изгибающие моменты от реактивного давления грунта в сечениях по граням колонны и уступов фундамента

кНм;

кНм.

Необходимая площадь продольной арматуры класса А400 у подошвы фундамента в продольном и поперечном направлениях определяется по приближенной формуле

мм2,

мм2.

Принимаем сварную сетку из стержней диаметром 16 мм с шагом 200 мм в обоих направлениях 15  16 A400 с Аs = 201  15 = 3015 мм2 > > Аs1 = 2630мм2.

Фундаменты с арматурой класса А400, расположенные выше или ниже уровня грунтовых вод подлежат расчету на образование трещин (в учебном пособии этот расчет не приводится).

6. Расчет монолитного столбчатого фундамента под колонну.

При выполнении расчета фундамента считается, что грунты основания не имеют пучинистых свойств. Поэтому глубина заложения фундамента не связывается с глубиной промерзания грунта. Также учитывается, что нагрузка на фундамент передается от колонны (Мmax=157,69 кНм, N=723,16 кН, Q=18,18 кН) и панелей ограждения (Nпанел.=(17,83+13,3)1,10,95+21,21,050,95=69,7+2,4=72,1 кН, М=72,10,4=28,84 кНм). Направление действия нагрузок см. рис.6.1.

Исходные данные:

  • усилия: N=723,16+72,1=795,26 кН, М=157,69+28,84=186,53 кНм, Q=18,18 кН,

  • материалы: бетон В15 (Rbt=0,75 МПа), арматура класса А400,

  • условное расчетное сопротивление грунта R0=0,25 МПа

Определение размеров подошвы фундамента

Площадь подошвы фундамента:

Nn=795,26/1,15=691,53 кНм

R0=0,20МПа— условное расчетное сопротивление грунта;

m=20кН/м3 – среднее значение объемного веса материала фундамента и грунта на обрезе фундамента,

Н=1м – предварительно назначенная высота фундамента.

стороны фундамента Размеры подошвы фундамента принимаютсяb=1,8 м, а=2,1м (а/b1,2). Площадь подошвы фундамента составляет А=1,82,1=3,78 м2, момент сопротивления – W=

Определение высоты фундамента

Высота фундамента назначается из условийанкеровки колонны и арматуры колонны в фундамент. Высоту фундамента составляет длина анкеровки плюс 250 мм (смотри рисунок 6.1).

Высота фундамента из условия анкеровки колонны:

Нф=hk+250=700+250=950 мм=0,95м

Высота фундамента из условия анкеровки арматуры колонны 20 А400 :

Нф=lan+250=300+250=550мм

, .

При определении расчетного сопротивления сцепления арматуры с бетоном Rbond принимаются следующие значения коэффициентов: 1=2,5 (для класса арматуры А400) и 2=1 (для 20). Подставляя в формулу базовой длины анкеровки l0,anзначения коэффициентов 1, 2, а также выражая площадь поперечного сечения арматуры и периметр арматуры через диаметр (), преобразуем формулу:

Длина анкеровки арматуры колонны при =0,75 (для сжатых стержней периодического профиля) и отношении площади поперечного сечения арматуры колонны требуемой по расчету и фактически установленной 0,68/12,56=0,054 составляет:

.

Вычисленную длину анкеровки арматуры необходимо сравнить с минимально допустимой: 0,3l0,an=0,3947=285 мм, 15d=15х20=300 мм и 200 мм.

Окончательно высота фундамента принимается — Нф=0,95 м. По высоте фундамент формируется из трех ступеней. Высота ступеней 350+300+300=950 мм. Минимальная толщина стенок неармированного стакана должна приниматься не менее 0,75 высоты верхней ступени, то есть 0,75300=225 мм (см. рис.6.1).

Проверка прочности основания под подошвой фундамента.

Нормативное значение нагрузок на уровне подошвы фундамента:

Мn=,

Gn=abНфmn=2,41,80,95200,95=77,98 кН,

Nn= 691,53+77,98=769,51 кН.

Максимальное значение давления под подошвой фундамента:

pmax=>1,2R0=

=1,2250=300 кН/м2, условие не выполняется. Требуется увеличение размеров подошвы фундамента: а=2,4 м, b=1,8 м. При этом изменяются A=4,32 м2, W=1,73 м3, Gn=77,98 кН, Nn= 691,53+77,98=769,51 кН.

Максимальное значение давления под подошвой фундамента:

pmax= — условие выполняется.

Минимальное значение давления под подошвой фундамента:

Pmin=— условие выполняется.

Определение площади рабочей арматуры.

Расчет ведется в плоской постановке: рассматривается сечение по фундаменту в плоскости рамы и в перпендикулярном плоскости рамы направлении (см. рис. 6.1).

Фундамент будет изгибаться под действием давления грунта р. Так как высота фундамента переменная, то расчет ведется в предположении изгиба как консоли нижней ступени (сечение 1-1), затем вместе нижней и средней ступеней (сечение 2-2) и, наконец, всего фундамента (сечение 3-3). На рис. 6.1 показаны ординаты эпюры давления грунта от расчетных нагрузок, необходимые для выполнения вычислений. Значения определены графически.

Момент в консоли определяется по формуле М=(нагрузка равномерно распределенная со средним значениемр в пределах длины консоли). Длина консоли l, например при расчете нижней ступени, равна . Размерностьр в формуле определения момента М — в кН/м, в то время как до этого р было определено в кН/м2. Для перехода к размерности плоской задачи: p=pb (сечение в плоскости рамы), p=pа (сечение перпендикулярное плоскости рамы)

М=.

Фундамент армируется сеткой, укладываемой с соблюдением защитного слоя 40 мм у подошвы фундамента. Для армирования фундамента диаметр арматурных стержней принимается не менее 12. Площадь рабочей арматуры определяется по формуле алгоритма расчета изгибаемых элементов по нормальному сечению:

.

Рабочая высота сечения составляет h0=ha (a принимается 0,05 м, где а — расстояние от середины сечения продольной рабочей арматуры до нижней грани поперечного сечения фундамента).

Краевые ординат эпюры давления грунта (расчетные нагрузки):

М=,

G=abНфmnf=2,41,80,95200,951,1=85,78 кН,

Nn= 795,26+85,78=881,0 кН.

Максимальное значение давления под подошвой фундамента:

pmax=.

Минимальное значение давления под подошвой фундамента:

Pmin=.

Результаты расчета сведены в таблицу 6.1.

Таблица 6.1

сечения

Момент, кНм

h0, м

Площадь рабочей

арматуры, см2

1-1

М=

0,125307,0(2,4-1,8)1,8=41,44

0,30

2-2

М=

0,125294,7(2,4-1,3)1,8=72,94

0,60

3-3

М=

0,125275,7(2,4-0,7)1,8=105,45

0,90

4-4

М=

0,125203,9(1,8-0,4)2,4=85,64

0,89*

*-для верхних стержней сетки

Для сетки армирования фундамента принимаются стержни 10А400 с шагом S=300 мм (подбор сетки смотри в разделе 7).

Рис. 6.1. К расчету монолитного столбчатого фундамента под колонну

1.5. Расчет и конструирование фундамента под колонну.

1.5.1. Исходные данные.

Грунты основания — пески средней плотности, условное расчетное сопротивление грунта Ro= 0,28 МПа.

Бетон тяжелый класса В20, Rbt= 0,90 МПа.

Арматура класса A–III,Rs= 365 МПа.

Вес единицы объема бетона фундамента и грунта на его обрезах m= 20 кН/м3.

Высоту фундамента принимаем равной 120 см (кратной 30 см), глубина заложения фундамента H1= 135 см. Расчетное усилие, передающееся с колонны на фундамент,

N =1580 кН. Усредненное значение коэффициента надежности по нагрузке f = 1,15.

кН.

1.5.2. Определение размера стороны подошвы фундамента.

Площадь подошвы центрально загруженного фундамента определяем по условному давлению на грунт Roбез учета поправок в зависимости от размеров подошвы фундамента и глубины его заложения:

,

где Nn—нормативное усилие, передающееся с колонны на фундамент;

Ro— условное давление на грунт, зависящее от вида грунта;

m— усредненная нагрузка от единицы объема фундамента и грунта на его уступах,

m= 20 кН/м3;

H1— глубина заложения фундамента.

м2.

Размер стороны квадратной подошвы:

м.

Принимаем размер a =2,4 м (кратным 0,3 м).

Давление на грунт от расчетной нагрузки:

кН/м2.

1.5.3. Определение высоты фундамента.

Рабочая высота из условия продавливания по подколоннику:

где hc,bc– размеры подколонника.

м

Полная высота фундамента устанавливается из условий:

  1. продавливания

м=30 см—высота части фундамента под подколонником.

  1. заделки колонны в фундаменте

см (меньше высоты подколонника ).

  1. анкеровки сжатой арматуры

см.

Принимаем полную высоту фундамента Н = 120 см, в том числе высота подколонника 90 см, монолитной части 30 см.

Проверяем, отвечает ли рабочая высота нижней части (или нижней ступени)

ho2=30-4 = 26 см условиюпрочности при действии поперечной силы без поперечного армирования в наклонном сечении. Для единицы ширины этого сечения (b=100 см) должно выполняться условие:

Поперечная сила от давления грунта в сечении по грани подколонника:

,

где а — размер подошвы фундамента;

а1— размер подколонника

ho— рабочая высота фундамента;

p— давление на грунт от расчетной нагрузки.

кН.

Поперечная сила, воспринимаемая нижней ступенью фундамента без поперечного армирования:

кН

52,04 кН < 126,4 кН—условие прочности удовлетворяется.

1.5.4. Расчет на продавливание.

Проверяем монолитную часть или нижнюю ступень монолитной части на прочность против продавливания:

где Rbt– расчетное сопротивление бетона осевому растяжению;

um– среднее арифметическое между периметрами верхнего и нижнего оснований пирамиды продавливания в пределах полезной высоты

м;

h02– рабочая высота нижней ступени фундамента или нижней части, состоящей из одной ступени.

Продавливающая сила

Где N– расчетное усилие, передающееся с колонны;

A1– площадь нижнего основания пирамиды продавливания

м2;

p– давление на грунт.

Продавливающая сила

кН.

кН

P= 767 кН <1229,9 кН, следовательно, прочность монолитной части или нижней ступени против продавливания обеспечена.

Окончательно принимаем фундамент, изображенный на рис.

5. Расчёт фундамента под колонну крайнего ряда

5.1. Исходные данные

Условное расчётное сопротивление грунта . Глубина заложения фундамента по условиям промерзания грунта. Бетон тяжёлый класса В 12,5,,; арматура из горячекатаной стали А-II,

5.2. Определение усилий в фундаменте

Значение усилий для расчёта фундамента принимаем из расчёта колонны в сечении 2-1 на уровне обреза фундамента. Нормативные значения усилий определяем делением расчётных нагрузок на усреднённый коэффициент надёжности по нагрузке .

Усилия, действующие относительно оси подошвы фундамента (без учёта собственного веса фундамента и грунта на его уступах), определяем по формулам:

;, где

и— усилия от веса стены, остекления и фундаментной балки;

— высота фундамента.

Предварительно определяем высоту фундамента из конструктивных требований. Глубина заделки двухветвевой колонны в стакан фундамента должна быть не менее , где— больший размер сечения всей колонны; не менее, где— больший размер сечения ветви; и не менее, гдеd= 20 мм — диаметр продольной арматуры колонны. Расстояние от дна стакана до подошвы фундамента принимаем 250 мм, тогда минимальная высота фундамента. Принимаем, тогда глубина заложения фундамента.

Нагрузку от веса стен, остекления и фундаментной балки, передающуюся на фундамент определяем по формуле:

, где

— вес 1м2кирпичной стены толщиной 510 мм;

— вес 1м2остекления;

и— высота кирпичной стены и остекления до отметки 9.78 м;

G= 12,9 кН — вес фундаментной балки.

Эксцентриситет этой нагрузки относительно оси фундамента (при толщине стены 510 мм и высоты сечения колонны 1300 мм):

Изгибающий момент от веса стены:

Расчёт выполняем на две наиболее опасные комбинации усилий с наибольшим по абсолютному значению изгибающим моментом и с наибольшей продольной силой. Значение усилий даны в табл. 9

Таблица 9

Коэффициент

надёжности по

нагрузке

Расчётное усилие

Комбинация усилий

первая

вторая

-389,81

-353,49

1312,07

1661,1

35,46

41,53

-339

-307,4

1141

1444,4

30,8

36,1

-827,52

-801,2

1731,1

2080,1

-719,6

-696,7

1505,3

1808,8

5.3. Определение размеров фундамента

Для подбора размеров подошвы фундамента используем усилия при . Расчёт производим методом последовательных приближений. Предварительно площадь подошвы фундамента определяем как для центрально нагруженного по формуле:

, где

1,1 — коэффициент, учитывающий наличие момента.

Назначаем соотношение сторон фундамента и получаем:

,

Принимаем размеры подошвы фундамента

Так как заглубление фундамента меньше 2 м, ширина подошвы больше 1м, необходимо уточнить нормативное давление на грунт по формуле:

Определяем краевое давление на основание.

Вторая комбинация усилий:

, где

— нормативная нагрузка от веса фундамента и грунта на его обрезах;.

Поскольку условие не выполняется, назначенные размеры подошвы фундамента недостаточны. Увеличиваем размеры подошвы фундамента,, тогда

Определяем краевое давление на основание.

Вторая комбинация усилий:

Первая комбинация усилий:

Проверка напряжений в основании показывает, что размеры подошвы фундамента достаточны.

Учитывая значительное заглубление фундамента, принимаем его конструкцию с подколонником стаканного типа и плитой переменной высоты. Назначаем толщину стенок стакана 325 мм > , зазор между колонной и стаканом поверху 75 мм, понизу 50 мм. Высоту ступеней фундамента назначаем. Высота подколонника:

. Размеры ступеней в плане:;;;. Размеры подколонника;(рис. ).

Высота плитной части фундамента . Проверяем достаточность принятой высоты плитной части из расчёта на продавливание.

Так как высота фундамента от подошвы до дна стакана

и

, то

выполняем расчёт на продавливание фундамента колонной от дна стакана, при этом учитываем только расчётную нормальную силу , действующую в сечении колонны у обреза фундамента.

Рабочая высота дна стакана средняя ширина;

Расчёт на продавливание производим по формуле:

, т.е. прочность дна стакана на продавливание колонной обеспечена.

Проверяем прочность фундамента на раскалывание. Вычисляем площади вертикальных сечений фундамента в плоскостях, проходящих по осям сечений колонны параллельно сторонам а и b:

При прочность на раскалывание проверяем из условия:

, то есть прочность на раскалывание колонной обеспечена.

6.1.5 Пример расчета фундаментов на естественном основании под колонны зданий и сооружений

Пример 6.1. Определить размеры и площадь сеченая арматуры внецентренно нагруженного фундамента со ступенчатой плитной частью и стаканным сопряжением с колонной размером сечения lс × bс= 400 × 400 мм. Глубина заделки колонны 0,75 м. Отметки: низа колонны — 0,90 м, обреза фундамента — 0,15 м, низа подошвы — 2,65 м. Размер подошвы 3,3 × 2,7 м.

Расчетные нагрузки на уровне обреза фундамента приведены в табл. 6.1.

ТАБЛИЦА 6.1. К ПРИМЕРУ 6.1
Расчетное
сочетание
При γf = 1 При γf > 1
N,
кН
Mx,
кН·м
Qx,
кН
Mу,
кН·м
Qy,
кН
N,
кН
Mx,
кН·м
Qx,
кН
Mу,
кН·м
Qy,
кН
1 2000 80 30 50 20 2400 96 36 60 24
2 800 110 50 70 30 960 132 60 84 36
3 1750 280 60 10 5 2100 336 72 12 6

Примечание. Индексы обозначают; х — направление вдоль большого размера подошвы; у — то же, вдоль меньшего.

Материалы: сталь класса А-III, Rs = 360 МПа (ø 6-8 мм), Rs = 375 МПа (ø 10 мм), бетон тяжелый класса В10 (В15).

Расчетные сопротивления приняты со следующими коэффициентами условий работы: γb1 = 1; γb2 = 0,9; γb4 = 0,85.

Решение. 1. Назначение предварительных геометрических размеров фундамента (рис. 6.12). Определим необходимую толщину стенок стакана по сочетанию 3:

е0 = Mx/ N = 336/2100 = 0,16 м, т.е. е0 < 2lc = 2 · 0,4 = 0,8 м.

Рис. 6.12. Размеры проектируемого фундамента

Толщина стенок должна быть δ > 0,2lс = 0,2 · 0,4 = 0,08 м, но не менее 0,15 м. Тогда размеры подколонника luc = buc = 2 · 0,15 + 2 ·0,075 + 0,4 = 0,85 м. Принимаем с учетом рекомендуемого модуля 0,3 м.

luc = buc = 0,9 м.

Высоты ступеней плитной части hi = 0,3 м. Площадь подошвы фундамента A = 3,3 · 2,7 = 8,92 м2. Момент сопротивления в направлении большего размера

Wx = l2b/6 = 3,32 · 2,7/6 = 4,9 м2.

Рабочая высота плитной части h = 0,3 · 2 – 0,05 = 0,55 м. Глубина стакана hg = 0,75 + 0,05 = 0,8 м.

2. Расчет фундамента на продавливание. Расстояние от верха плитной части до низа колонны 1,05 м, в то время как huc = (luc – 1c)/2 = 0,25 м, следовательно, проверка на продавливание плитной части производится от низа подколонника.

Максимальное краевое давление на грунт (6.9):

сочетание 1

pmax = N/A + (Mx+QxH)/Wx = 2400/8,92 + (96 + 36 · 2,4)/4,9 = 0,268 + 0,033 = 0,306 МПа;

сочетание 3

pmax = 2100/8,92 + (336 + 72 · 2,4)/4,9 = 0,339 МПа.

Принимаем наибольшее значение pmax = 0,339 МПа. Продавливающая сила F = А0pmax.

По формуле (6.6)

A0 = 0,5b(l – l – 2h0) – 0,25(b – buc – 2h0)2 = 0,5 · 2,7(3,3 – 0,9 – 2 · 0,55) – 0,025(2,7 – 0,9 – 2 · 0,55)2 = 1,64 м2.

Тогда F = 1,64 · 0,339 = 556 кН.

Задаемся классом бетона В10 с Rbt = 0,57 МПа. С учетом γb2 = 0,9 и γb4 = 0,85 Rbt = 0,57 · 0,9 · 0,85 = 0,436 МПа.

По формуле (6.7) bр = bс+ h0 = 0,9 + 0,55 = 1,45 м.

Тогда

kRbtbph0 = 1 · 0,436 · 1,45 · 0,55 = 305 < 556 кН.

Следовательно, принятая высота плитной части фундамента недостаточна. Переход на бетон класса В15 повысит несущую способность на продавливание в 250/150 = 0,7/0,57 = 1,2 раза, чего также недостаточно. Следует либо увеличить высоту верхней ступени (например, с 0,3 до 0,45 м), либо внести еще одну (третью) ступень, т.е. принять высоту плитной части h = 0,9 м; h0 = 0,85 м.

Принимаем трехступенчатый фундамент. Проверку на продавливание производим (при разном числе ступеней плитной части) в двух направлениях по формулам (6.27) и (6.28):

A0 = 0,5b(l – luc – 2h0) – 0,25 [b – buc – 2(h0h3)]2 = 0,5 · 2,7(3,3 – 0,9 – 2 · 0,85) – 0,25[2,7 – 0,9 – 2(0,85 – 0,3)]2 = 0,85 м2;

F´ = 0,85 · 0,339 = 288 кН; b1p = buc + (h0h3) = 0,9 + (0,85 – 0,3) = 1,45 м.

Несущая способность фундаментов по формуле (6.26)

F = 0,436 [(0,85 – 0,3)1,45 + 0,3 · 0,9] = 465 кН > 288 кН.

Принятый фундамент удовлетворяет условию прочности на продавливание

Рассмотрим дополнительно вариант при двухступенчатом фундаменте с высотой верхней ступени 0,45 м. Тогда (при h0 = 0,7 м):

A0 = 0,5 · 2,7(3,3 – 0,9 – 2 · 0,7) – 0,25(2,7 – 0,9 – 2 · 0,7)2 = 1,31 м2;

F´ = 1,31 · 0,339 = 444,1 кН;

b1p =0,9 + 0,7 = 1,6 м.

Несущая способность фундамента по формуле (6.1)

F = 1 · 0,436 · 1,6 · 0,7 = 488,3 кН > 444 кН,

т.е. и такой фундамент удовлетворяет прочности на продавливание.

Покажем, однако, что последний вариант менее экономичен. Действительно, объем плитной части высотой 0,9 м при трехступенчатом фундаменте

V3 = 3,3 · 2,7 · 0,3 + 2,4 · 1,8 · 0,3 + 1,5 · 0,9 · 0,3 = 4,37 м3, а при двухступенчатом фундаменте с учетом дополнительного объема подколонника на высоте 0,9 – 0,75 = 0,15 м

V2 = 3,3 · 2,7 · 0,3 + 2,4 · 1,8 · 0,45 + 0,9 · 0,9 · 0,15 = 4,74 м3 > 4,37 м3.

Итак, принимаем трехступенчатый фундамент с высотой плитной части 0,9 м.

Проверим прочность нижней ступени при заданном ее выносе 450 мм и h01 = 0,25 м:

A0 = 0,5 · 2,7(3,3 – 2,4 – 2 · 0,25) – 0,25(2,7 – 1,8 – 2 · 0,25)2 = 0,5 м2;

P = 0,5 · 0,339 = 169 кН:

b1p = 1,8 + 0,25 = 2,05 м.

Несущая способность ступени F = 1 · 0,436 · 2,05 · 0,25 = 223 кН > 169,5 кН.

Размеры лежащих выше ступеней назначаются пересечением линии AB с линиями, ограничивающими высоты ступеней (рис. 6.13).

Рис. 6.13. К определению размеров ступеней

Определение площади сечений арматуры плитной части фундамента проведем на примере нижней арматуры (направленной вдоль большей стороны подошвы фундамента) класса А-II.

Расчетные усилия на уровне подошвы принимаем по сочетанию 3 без учета веса фундамента:

N = 2100 кН; M = 336 + 72 · 2,4 = 509 кН·м; е0x = 509/2100 = 0,242 м.

Определим давление на грунт в расчетных сечениях (см. рис. 8.12)

Pmax = N/ A + M/ W = 2100/8,92 + 509/4,9 = 370 кН/м2;

По формуле (6.33)

k´I = 1 – 2 · 0,45/3,3 = 0,73.

тогда

pI = N/A + k´IM/W = 236 + 0,73 · 135 = 345 кН/м2.

Аналогично получаем:

k´II = 1 – 2 · 0,9/3,3 = 0,45;

pII = 236 + 0,45 · 135 = 297 кН/м2.

k´III = 1 – 2 · 1,2/3,3 = 0,28

pIII = 236 + 0,28 · 135 = 274 кН/м2.

Изгибающие моменты:

кН·м;

кН·м;

кН·м.

Принимаем арматуру класса А-II с Rs = 285 МПа:

см2;

см2;

см2.

5 Расчет и конструирование монолитного внецентренно нагруженного фундамента под колонну

5.1 Данные для проектирования

Глубину заложения подошвы принимаем из условия промерзания грунта равной d = 2,55 м. Обрез фундамента — на отм. -0,15 м. Расчетное со­противление грунта основания R = 0,30 МПа, средний удельный вес материала фундамента и грунта на нем γт = 20 кН/м. Бетон фундамента класса В 20 с расчетными характеристиками при :;. Под фундаментом предусматривается бетонная подго­товка толщиной 100 мм из бетона класса В3,5.

На фундамент в уровне его обреза передаются от колонны следующие усилия:

комбинация Мтin

Nn = 507,3 кН; М = -102,5кН·м; Qn = 17,46 кН;

комбинация Nтax

Nn = 670,6 кН; М = -92,17кН·м; Qn = 20,41 кН

Эксцентриситет приложения нагрузки от стены , тогда изгибающие моменты от веса стены относительно оси фундамента:

Расчетная схема усилий для фундамента показана на рис. 4.2.

5.2 Определение размеров подошвы фундамента и краевых давлений

Примем соотношением сторон т =b / l = 0,8 и предварительно уста­новим размер меньшей стороны как для центрально нагруженного фунда­мента

Размер большей стороны .

Принимаем унифицированные размеры , тогда площадь подошвы, а момент сопротивления

Проверка давлений под подошвой фундамента. Проверяем наи­большее рп,тах и наименьшее рп,тin краевые давления и среднее рп,т дав­ление под подошвой. Принятые размеры подошвы должны обеспечивать выполнение следующих условий:

.

Давление на грунт определяем с учетом веса фундамента и грунта на нем по формуле

где усилия на уровне подошвы фундамента.

Замечание к выбору знака момента от поперечной силы Q. При рас­чете поперечной рамы за положительное принималось направление упру­гой реакции колонны слева направо. Тогда положительный знак попереч­ной силы Q соответствует ее направлению справа налево. Следовательно, момент, создаваемый поперечной силой Q относительно подошвы фунда­мента, при положительном знаке Q действует против часовой стрелки и принимается со знаком «минус».

Комбинация Мтin

Комбинация Nтax

В обеих комбинациях давления рп не превышают допускаемых, т.е. принятые размеры подошвы фундамента достаточны.

Расчетной оказывается комбинация Nтax, при которой давление на грунт больше.

5.3 Определение конфигурации фундамента и проверка нижней ступени

Учитывая значительное заглубление подошвы, проектируем фундамент с подколонником и ступенчатой плитной частью.

Размеры подколонника в плане:

где исоответственно толщина стенок стакана и зазор между гранью колонны и стенкой стакана в направлении сторон l и b.

Рабочую высоту плитной части фундамента предварительно можно установить из условия продавливания от граней подколенника по формуле

Принимая и, получим

.

По расчету можно принять плитную часть в виде одной ступени высо­той . Тогда консольные выносы ступеней составят:

первой (нижней) — ;

второй —.

Глубина стакана под колонну; размеры дна стакана:.

Проверка высоты нижней ступени. Высота и вынос нижней ступени проверяются на продавливание и поперечную силу. Проверку на продавливание выполняем из условия

,

где продавливающая сила;

— размер средней линии грани пирамиды продавливания.

Площадь

тогда продавливающая сила

— продавливание нижней ступени не произойдет.

Отправить ответ

avatar
  Подписаться  
Уведомление о